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Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in
breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first
stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their
classification, and comparison with the existing image database. It is often the case that already existing image databases have large
sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer
detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based
image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed.
As a dataflow engine (DFE) of such HPRDC, Maxeler’s acceleration card is used. The experiments for examining the acceleration
of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with
different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm

execution. Those acceleration values are presented and experimental results showed good acceleration.

1. Introduction

Image segmentation is the most common procedure applied
in medical imaging analysis. It is also one of the most impor-
tant tasks in image processing [1]. In computer vision, image
segmentation is the process of partitioning the image into
multiple segments. This technique or group of techniques
refers to dividing images into regions with similar attributes.
The attributes are often gray levels, colors, edges, texture
characteristics, or spectral properties. The main goal of image
segmentation is to simplify the representation of an image
into something that is more meaningful, thus making an
image easier to analyze in the image processing tasks.

The process of image segmentation is one of the main
parts in various applications in medical diagnostics. Algo-
rithms for image segmentation are used for detecting micro-
calcification in mammography images [2] whose major role is

in the opportune detection and treatment of a lesion. Kallergi
[3] created automated computed tools for microcalcification
detection based on wavelet filters and used artificial neural
networks. For tumor region extraction and enhancement of
the classification of mammographic images, edge detection
operators are considered [4]. In order to segment dense areas
of the breast and the existence of mass and to visualize other
breast regions, the graph cuts (GC) segmentation technique is
used [5]. Aghdam et al. [6] proposed a probabilistic approach
for breast boundary extraction in mammograms.

Detection of microcalcification is, in most cases, per-
formed with preprocessed images. Oliver et al. [7] filtered
images by different kinds of filters with the aim of creating
a huge dictionary database. New images were compared with
a database where every pixel of the breast image is a center
of the patch. The results are probability images where a
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higher brightness pixel corresponds to more reliance to be
microcalcification.

The final result of the segmentation process is a uniform
region. According to [8], the segmentation quality is rated
by the ratio of uniformity and homogeneity of the estimated
region. The regions need to be shell-free and edges of regions
are smooth and space accurate.

The segmentation of images has a wide/significant/
important application in digital mammography. The main
goals of scientists and researchers are to develop sophisticated
image analysis tools that can automatically detect suspicious
mass regions of the breast. This process begins with extraction
of regions of interest (ROIs) of breast images. Then, the
detection of suspicious regions and their classification are
performed, after which the comparison with the existing
image database starts.

For medical diagnostic decision systems, it is very impor-
tant to provide a large training data set. For preparation of
this data, a large database of medical images can be very
helpful. The processing time can be a limiting parameter here.
To accelerate the processing time, multicore, many-core, and
FPGA based dataflow architectures can be used.

In this paper, the FPGA based dataflow architecture
provided by Maxeler is used to accelerate region-of-interest
based image segmentation algorithm for (breast) mammo-
gram images which is developed by Milosevic et al. [9] and
described in this paper.

2. Background

Combining the architecture and techniques from High-
Performance Computing (HPC) systems with those of RDC
systems, a great increase can be achieved in calculation speed
in many algorithms [10]. By familiarizing with the RDC
systems and clarifying speedup possibilities, one can achieve
additional performance advantages over other single-core
solutions. The RDC systems represent the combination of
reconfigurable logic and, in most cases, are based on FPGA
architecture.

2.1. Field Programmable Gate Arrays. Field programmable
gate arrays are integrated circuits designed in such manner
so that they can be configured by the designer to implement
some digital computations. They were invented in the 1980s
by Santo [11]. Their main goal is to accelerate certain calcu-
lation tasks with respect to the single processing unit. They
also have low processing power consumption. They achieve
the best results in speedup with algorithms with limited data
dependencies and significant scope for parallel execution.

In order to implement complex computational tasks, the
modern FPGAs have a large number of logic blocks, I/O pads,
and routing channels. The process of mapping an algorithm
into FPGA requires paying special attention to the available
amount of resources. The number of the logic blocks and
I/O pads can be easily determined from the design, but the
number of routing channels may vary significantly.

To define the behavior of the FPGA, the designer can
use hardware description language (HDL) or some other
specialized computer language. The design, described using
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some of those languages, is transformed into technology-
mapped netlist via an electronic design automation tool. That
netlist is then mapped to the actual FPGA architecture. At
each point of the process of defining the behavior of the
FPGA, the functionality of the design is validated via timing
analysis, simulation, and other verification methodologies.
When the process of validation is done and it is concluded
that functionality of the design is correct, the binary file
is generated. This binary file is then used to configure the
FPGA. In theory, any algorithm can be mapped into FPGA,
but, in practice, the main constraints are already mentioned:
available resources, clock rates, and available I/O pads.

2.2. Dataflow Computing. The computers based on von
Neumann architecture or control flow architecture fetch the
instructions and data from the memory, perform operations
specified by instructions, and write the results back to the
memory. The main drawback of this architecture is that each
execution of an instruction requires cyclic access for memory
which results in a large number of data transfers between the
Central Processing Unit (CPU) and memory.

The dataflow computing paradigm is fundamentally dif-
ferent from the standard control flow computing. In dataflow
computing, the high level language is used to generate a
dataflow graph which is directly mapped to the dataflow
engine (DFE). Each node in this graph performs a specific
operation and outputs the result of that operation to another
node in the graph, and thus the cyclic access for memory is
avoided.

Dataflow computing paradigm as such has some advan-
tages and some disadvantages with respect to control flow
computing. The main advantage is that the instructions are
executed in a natural sequence as data propagate through the
algorithm. It also reduces the effect of memory access latency
because all of the data travel through the graph and they are
attached to their nodes. The main disadvantage is the lack of
central control, because each node is activated only when all
of its inputs are available. Also, the nodes are forced to use
data when they are available even if they are not needed at
that time.

Dataflow computing is nowadays used in a large number
of applications. It not only accelerates the applications,
but also makes them more energy efficient compared to
sequential computing because of the low processing power
consumption of DFEs. Energy efficiency is achieved with
low DFE’s frequency and it is a well-known fact that power
consumption is directly proportional to frequency. The DFE’s
frequency can go up to a few hundreds of MHz, while
frequency of today’s processors goes up to a few GHz.

This dataflow computing method is used in automation
applications [12], digital signal processing [13, 14], mathemat-
ics for solving systems of equations [15], floating-point matrix
multiplication [16], financial derivatives pricing [17], artificial
neural networks [18], and much more.

2.3. High-Performance Reconfigurable Dataflow Comput-
ers. High-Performance Reconfigurable Dataflow Computers
(HPRDCs) represent the architecture that integrates the
Reconfigurable Dataflow Computers and general-purpose
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processors or some parallel computing systems. The basic
idea of HPRDCs was born in 1960 by Estrin who proposed
the concept of a computer made of a general-purpose pro-
cessor and reconfigurable hardware [19]. This heterogeneous
architecture is mostly used in some scientific researches and
in supercomputing. It is also used in industrial applications
such as MORPHEUS project [20]. The simplified view of this
architecture is shown in Figure 1.

One or more DFEs are interconnected via a dedicated
high-speed network with the CPU and its memory. Data
arrays from the CPU are transferred through this network to
the DFE and streamed through DFE computational logic (i.e.,
DFE kernels). The results of this computation are transferred
back to the CPU memory. In the HPRDC architecture, the
DFE is used as an application specific processor, which accel-
erates some computationally expensive section of the code.

2.4. Maxelers Dataflow Engines. Maxeler has developed
DFEs which use a high-speed, large area FPGA chip as a
computational unit. The general architecture of these DEFs is
shown in Figure 2. Each DFE consists of one or more kernels,
manager, fast memory (FMem), and large memory (LMem)
and is connected to the CPU via PCI Express bus.

Kernels represent hardware implementation of an algo-
rithm and their main task is to perform computation as data
flows through the DFE. The manager has a task to define the
way in which data flows between kernels, memories, and host
processor. The DFE has two types of memory: fast memory
(FMem) and large memory (LMem). The FMem is an on-
chip memory and can store several megabytes of data with
terabytes/second of access bandwidth. The LMem is an off-
chip memory and it is much larger than the FMem. It can
store many gigabytes of data.

Maxeler has also developed its own hardware descrip-
tion language called Max]. The Max] is a Java based lan-
guage which enables a user without significant expertise in
hardware design to write high-performance applications for
FPGA with a higher level of abstraction from hardware than
a HDL. MaxCompiler uses Max] code and in its runtime
generates VHDL which is built into bitstream using FPGA
vendor’s toolchain. Different generations of Maxeler’s DFEs
have different FPGA vendors which are either Xilinx or
Altera. Voss et al. [21] showed on the gzip design example that
using Max] takes only one person and a period of one month
to develop an application and achieve better performance
than the related work created in Verilog and OpenCL.
Maxeler has also provided simulation and debugging tools
which allow designs to be tested before building for a real DFE
which provides much faster development than with using
low level hardware description languages such as Verilog and
VHDL.

Maxeler’s DFEs are widely used in many fields. Gan et al.
[22] summarize their experiences of using Maxeler’s DFEs to
eliminate the main bottlenecks and obtain higher efficiencies
in solving geoscience problems. They managed to achieve
better results in both performance and power efficiency over
traditional multicore and many-core architectures. Grull and
Kebschull [23] showed acceleration of 200 compared to an
Intel i5 450 CPU for localization microscopy and acceleration
of 5 over an Nvidia Tesla C1060 for electron tomography
while maintaining full accuracy using Maxeler’s DFEs. Gan
et al. [24] used Maxeler’s DFEs to find the solution of global
shallow water equations (SWEs), which are one of the most
essential equation sets describing atmospheric dynamics.
They achieved speedup of 20 over a fully optimized design
on a CPU rack with two eight-core processors and speedup
of 8 over the fully optimized Kepler GPU design. They also
managed to have 10 times higher power eficiency than a
Tianhe-1A supercomputer node. Weston et al. [17] achieved
acceleration over 270 times faster than a single Intel Core for
a multiasset Monte Carlo model.

3. Region-of-Interest Based Image
Segmentation Algorithm for (Breast)
Mammogram Images

The method for mammogram ROI detection [9] is composed
of pectoral muscle removal and background removal which
represent any artifact present outside the breast area, such
as patient markings [25]. There are two views of breast
mammogram images: left sided and right sided. For the sake
of simplicity, both algorithms, the background removal and
the pectoral muscle removal, will be explained for the right
sided view of a breast mammogram image. The algorithms
for the left sided view are very similar to the algorithms for
the right sided view, and thus there is no need to explain both
algorithms.

3.1. Background Partition Removal Algorithm. The basic idea
of background partition removal algorithm is to find the
largest area of connected nonblack pixels and then set
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FIGURE 3: Background partition removal algorithm result.

FIGURE 4: Pectoral muscle removal algorithm result.

all other pixels to black. The algorithm is as shown in
Algorithm 1.

The result of the background partition removal algorithm
is shown in Figure 3. As it can be noticed, the unnecessary
background has been removed successfully.

After the background partition removal has been done,
the next task is pectoral muscle removal.

3.2. Pectoral Muscle Removal. Pectoral muscle tissue is usu-
ally denser than the rest of the breast. Therefore, pectoral
muscle and the central part of the breast can be extracted by
applying local threshold operation with appropriate thresh-
old value. The algorithm for pectoral muscle removal is as
shown in Algorithm 2.

The result of the pectoral muscle removal algorithm
is shown in Figure 4. As it can be noticed, the unwanted
pectoral muscle has been removed successfully.

After the pectoral muscle removal, the process of ROI
extraction is performed. The breast mammogram image
obtained in this way is more convenient for further process-
ing.

4. Mapping the Region-of-Interest Based
Image Segmentation Algorithm for (Breast)
Mammogram Images on DFE

As a DFE platform for mapping the region-of-interest based
image segmentation algorithm, Maxeler’s DFE is used. In

the case of this algorithm, the graph that represents it
consists of two kernels: one for background partition removal
and the other for pectoral muscle removal. The manager is
responsible for getting the data about mammogram images
from the host processor, streaming them to the input of the
kernel for background partition removal, getting the output
of this kernel and streaming it to the input of the kernel for
pectoral muscle removal, and streaming the output of this
kernel back to the host processor.

After implementing this graph on DFE, there were still a
lot of unused FPGA resources left on it. Because of that, as it is
shown in Figure 5, this graph is multiplied eight times, so that
the DFE can process eight mammogram images at the same
time. There cannot be more than eight graphs on the DFE
because it is limited to eight input and eight output streams.

The host processor streams the data about one or more
(up to eight) mammogram images (M, g)) to the DFE. The
manager on the DFE collects these data and streams them
to the kernels K(; 4). The kernels process these data and
stream region-of-interest images (ROI; ) to the manager,
as a result of that processing. The manager collects these
output data from the kernels and streams them to the
host processor. The host processor writes these data to the
memory. In this way, the process of region-of-interest based
image segmentation on the DFE is done.

On the block diagram that represents the DFE design,
there are eight kernels K(; g which can process eight mam-
mogram images at the same time. Each kernel K g is
constructed by two kernels: K, and Kg. The kernel K,
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Step 1. Start with the first row;

Step 2. Scan from left to right side;

Step 3. While pixel is black go to the next pixel and after that go
to Step 4;

Step 4. While pixel is not black go to the next pixel and after that
go to Step 5;

Step 5. If it is a first row then set all other pixels in that row to
black and go to Step 7, otherwise go to Step 6;

Step 6. If the above pixel is black then set the current pixel to
black and go to the next pixel and repeat Step 6, otherwise
go to the next pixel and repeat Step 6. If there are no more
pixels in the current row then go to Step 7;

Step 7. Repeat Steps 2 to 6 for the next row.

AvLGoriTHM l: Background partition removal algorithm.

Step 1. Start with the first row;

Step 2. Scan from left to right side;

Step 3. While pixel value is less than the threshold value go to the
next pixel;

Step 4. 1f the pixel belongs to the first tenth part of the
mammogram then the pixel value is greater than or equal to
the threshold value set the current pixel value to black and
go to the next pixel and repeat Step 4, otherwise go to Step
6;

If the pixel does not belong to the first tenth part of the
mammogram anymore go to Step 5;

Step 5. If the pixel value is greater than or equal to the threshold
value and the above pixel is black then set the current pixel
value to black and go to the next pixel and repeat Step 5,

otherwise go to Step 6;

Step 6. Repeat Steps 2 to 5 for the next row.

ALGORITHM 2: Pectoral muscle removal algorithm.

=
5
£

DFE l l

K, Kz‘ Kg
|

ROI,

ROI, ROI,

FIGURE 5: Block diagram for the DFE design.
implements the background partition removal algorithm,

whereas the kernel Ky implements the pectoral muscle
removal algorithm.

Both of these kernels are defined with separate graphs
which describe their functionality. The simplified versions of
these two graphs are presented in Figures 6 and 7. In these
figures, some variables like “first_white” and “above_pixel”
are presented as input streams, but in the final application
they are calculated.

For the purpose of understanding the graph, they can
be presented as input streams because their calculation does
not have an effect on anything else and their name clearly
describes what they are used for. The variable “first_white”
is used to determine the first appearance connected nonblack
pixels for the current row of the breast mammogram image.
The variable “above_pixel” holds the value of the pixel that
is in the same column as the current pixel of the breast
mammogram image, but it is in the upper row. In this way,
much more simplified and clearer graphs are derived.

Also, both graphs need to meet some conditions from
the DFE usage point of view. They need to be designed in a
way so that they use the least possible number of nodes, but
also to meet the requirements of algorithms for background
partition removal and pectoral muscle removal.
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4.1. Graph for Background Partition Removal Kernel. The
main task that the background partition removal kernel needs
to accomplish is to remove the unnecessary background
from the breast mammogram image. In Figure 6, the graph
designed for the background partition removal algorithm is
shown.

The graph designed for this kernel consists of two multi-
plexers, few arithmetic nodes, one counter node which is used
to count from 0 to the number of rows of mammogram image
minus 1 with Step 1, few input streams and scalar inputs, and
one output stream.

The main parts of this graph are two multiplexers with
IDs 22 and 37. Depending on certain conditions, they stream
out the value of the current image pixel or set that value to the
black and stream it to the output.

The first multiplexer (ID: 22) checks two conditions:
whether the current pixel belongs to the first row of the
mammogram image and whether it does not belong to the
first connected part of the nonblack pixels of the first row.
If these two conditions are satisfied, it sets the current pixel
to the black, in which way the background partition pixel is
removed, and streams it to the second multiplexer (ID: 37)
and further to the output. Otherwise, if the conditions are not
satisfied, the first multiplexer streams the unchanged current
image pixel to the second multiplexer for processing, because
it does not belong to the background partition part of the
mammogram image.

The second multiplexer (ID: 37) checks whether the
current pixel does not belong to the first row and to the first
connected part of the nonblack pixels of the current row of
the mammogram image and whether the above pixel value
is smaller than the predefined value “black.” The predefined
value “black” is used as a threshold for determining the
color of the pixel: black or nonblack. If all the conditions
are satisfied, the second multiplexer sets the current pixel to
black, in which way the background partition is removed,
and streams it to the output. Otherwise, if the conditions are
not satisfied, the second multiplexer streams the unchanged
current image pixel to the output, because it does not belong
to the background partition part of the mammogram image.

The output of the kernel for the background partition
removal is connected to the input of the kernel for the
pectoral muscle removal.

4.2. Graph for Pectoral Muscle Removal Kernel. The main task
that the pectoral muscle removal kernel needs to accomplish
is to remove the part of the mammogram image that repre-
sents pectoral muscle tissue. In Figure 7, the graph designed
for the pectoral muscle removal algorithm is shown.

The graph for background partition removal kernel con-
sists of almost the same nodes as the graph for background
partition removal. It consists of two multiplexers, several
arithmetic nodes, one counter node which counts from 0 to
the number of rows of mammogram image minus 1 with Step
1, few input streams and scalar inputs, and one output stream.

The main parts of this graph are two multiplexers with IDs
19 and 35. Depending on certain conditions, they stream out
the value of the current image pixel or set that value to black
and stream it to the output.

Computational and Mathematical Methods in Medicine

The first multiplexer (ID: 19) checks whether the current
pixel belongs to the row that is in the first tenth part of the
mammogram image and whether the current image pixel
value is greater than or equal to the predefined variable
“threshold.” The predefined value “threshold” is used as a
threshold for determining whether the current pixel belongs
to the pectoral muscle tissue part of the mammogram image.
If all of these conditions are satisfied, the first multiplexer sets
the current pixel to black, in which way the pectoral muscle
part is removed, and streams it to the other multiplexer (ID:
35) and further to the output with no dependencies with
the conditions for the other multiplexer. Otherwise, if the
conditions are not satisfied, the first multiplexer streams the
unchanged current image pixel to the second multiplexer for
processing, because it does not belong to the pectoral muscle
tissue part of the mammogram image.

The second multiplexer (ID: 35) checks whether the
current pixel does not belong to the row that is in the
first tenth part of the mammogram image, if the current
image pixel value is greater than or equal to the predefined
variable “threshold,” and if the above pixel is black. If all
those conditions are satisfied, the second multiplexer sets
the current pixel to black, in which way the pectoral muscle
is removed, and streams it to the output. Otherwise, if the
conditions are not satisfied, the second multiplexer streams
the unchanged current image pixel to the output, because
it does not belong to the pectoral muscle tissue part of the
mammogram image.

The output of the kernel for the pectoral muscle removal is
streamed to the host processor which writes it to the memory.
With storing these data into the memory, the process of ROI
extraction is done.

4.3. Resource Usage. All inputs and outputs to both above
kernels have 32-bit width. Multiplexers in both kernels are
2-to-1 multiplexers with 32-bit width inputs and output and
1-bit width selection signal. The counters have also 32-bit
width. Arithmetic nodes used for comparisons (<, >, ==,
>=, <=) have 32-bit width inputs and 1-bit width output,
AND arithmetic node has 1-bit width input and output, and
deviation arithmetic node is used for 32-bit width deviation
of unsigned integers.

The FPGA resource usage per each operator according to
the MaxCompiler’s resource annotation [26] is presented in
Table 1.

5. Implementation Results and Discussions

As it is already mentioned, the algorithm for region-of-
interest based image segmentation is mapped on Maxeler’s
DFE. Maxeler’s DFE was chosen because, in the literature,
it showed better performances and energy efficiency against
desktop processors and computing servers. On the other
hand, simple array of FPGAs is not chosen because languages
such as Verilog and VHDL which are widely used to design
FPGA require significant expertise and considerable design
efforts which is opposed to Maxeler’s solution which requires
knowledge of Java based Max] only.
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TaBLE 1: FPGA resource usage per operator.
Operator LUTs FFs BRAMs DSPs
Counters 114 99 0 0
Comparison nodes 17 1 0 0
Deviation nodes 1225 1187 0 0
AND 1 1 0 0
TaBLE 2: DFE resource usage.
Total available resources Total resources used Used by kernels Used by manager Stray resources

LUTs 207360 44784 (21.60%) 26006 (12.54%) 18081 (8.72%) 11 (0.01%)
FFs 207360 52447 (25.29%) 26660 (12.86%) 24664 (11.89%) 94 (0.05%)
BRAM;s 324 84 (25.93%) 11 (3.4%) 71 (21.91%) 0 (0%)
DSPs 192 21 (10.94%) 21 (10.94%) 0 (0%) 0 (0%)

The DFE is attached to the host processor via PCI 8 1
Express bus and it is configured with two kernels and a 7
manager. The Maxeler dataflow computer can be understood
as a combination of two programming paradigms: control 61
flow and dataflow. Before one begins programming DFE, g 51
he/she must split the whole algorithm into its control flow g
and dataflow part. For instance, in this case, the control g 41
flow part consists of reading the mammogram images from g 3]
the memory and writing the processed images back to the 5 |
memory, whereas the dataflow part relates to the whole image
segmentation algorithm. 1 4

The execution speeds of the algorithm for region-of- o
interest based image segmentation on a general-purpose 1 ) 3 4 5 6 7 8

processor and Maxeler’s DFE are compared. Maxeler’s DFE
which was used is MAX2336B which contains Xilinx Virtex
5 XC5VLX330T FPGA chip. The comparisons were made
on various configurations of DFE and with two types of
mammogram images: with resolution of 1024 x 1024 pixels
and 4800 x 6400 pixels.

The general-purpose processor that was used is Intel
Core i3-3240 which works at a frequency of 3.40 GHz. The
operating system of the machine with this processor was
CentOS release 5.10. The code was written in C programming
language and compiled with GCC compiler.

The DFE was, as it is already mentioned, configured in
various ways. It was configured to work with only one picture
at a time and with two and more, but up to eight, pictures
at the same time. This was accomplished by mapping only
one kernel for region-of-interest based image segmentation
and then mapping two and more, but up to eight, kernels
on the DFE. The DFE was also configured to work with
different frequencies: 75 MHz, which is the default frequency;,
and 200 MHz. The code for Maxeler’s DFE was written in
MaxIDE development environment and was compiled using
MaxCompiler [26]. The resource usage of the DFE for the
case of eight kernels and frequency of 200 MHz is shown in
Table 2. As it can be noticed from the table, there are still a lot
of unused FPGA resources on the DFE.

In Figure 8, the diagram shown presents the amount of
acceleration for two types of images, with resolutions of
1024 x 1024 pixels and 4800 x 6400 pixels, and the different
number of processing images at the same time.

Number of processing images at the same time

W 1024 x 1024
W 4800 x 6400

FIGURE 8: Acceleration analysis with various configurations of DFE
with frequency of 75 MHz.

Figure 8 displays that the acceleration is much greater
if DFE processes larger mammogram images. Also, with
the increase in the number of processing images at the
same time, the acceleration increases to some point for
both mammogram images types. From that point onwards,
the acceleration is approximately constant. This is the point
where acceleration gets bound with PCI Express bandwidth.

The same diagram as in Figure 8 is presented in Figure 9,
but the frequency is greater and it is set to 200 MHz. As it
can be noticed, the acceleration is still much greater if DFE
processes larger mammogram images.

Compared to the acceleration results in Figure 8 with a
frequency of 75 MHz, the acceleration results in Figure 9 with
frequency of 200 MHz in the area of one and two processing
mammogram images at the same time are much better, but
outside that area the results are pretty much the same. The
reason for this is also that this is the point where acceleration
gets bound with PCI Express bandwidth.

The point where acceleration gets bound with PCI
Express bandwidth is pretty easy to calculate. It is the point
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FIGURE 9: Acceleration analysis with various configurations of DFE
with frequency of 200 MHz.

where the time required to stream data to/from the DFE
starts to be greater than the time required to execute the real
processing of the data. The time to process all the data can be
calculated using the following formula:

cycles
Tprocessing = m (1)
The “cycles” is the number of cycles required to do all
processing and the “frequency” is the frequency on which
DFE is running. The time to stream the data to/from the DFE
can be calculated using the next formula:

BytesIn BytesOut ) 2
BandwidthIn’ BandwidthOut /

Tpcre = max(

From the point where acceleration gets bound with PCI
Express bandwidth, the only thing that can be done is to try
to compress input/output data. If this can be achieved, then it
would make sense to add more pipes to the design.

6. Conclusion

In this paper, the implementation of the region-of-interest
based image segmentation algorithm for breast mammo-
grams on the DFE is proposed. The experimental results
showed that there was a significant speedup in algorithm
execution on DFE compared to the general-purpose proces-
sor. The experiments were performed on over two types of
breast mammogram images with different resolutions. The
results showed that, with better image resolution (i.e., with
more data per image to process), the acceleration is greater.
Also, there were several configurations of the DFE which were
implemented for testing purposes and discussed in detail.
The experimental results showed that the acceleration of
algorithm execution goes near seven times for some DFE
configurations.

Further work on this research may be in implementing
other stages of the procedure for breast cancer detection

Computational and Mathematical Methods in Medicine

from mammogram images on the DFE and exploring those
acceleration results. It would be interesting to try to accelerate
algorithms for identification of suspicious mass regions of
breast mammograms which take as input the results of the
algorithm described in this paper.
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