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Abstract: This research is devoted to the determination of hidden dependencies between the flow
of particles that come from the Sun and precipitation-induced floods in the United Kingdom (UK).
The analysis covers 20 flood events during the period from October 2001 to December 2019. The
parameters of solar activity were used as model input data, while precipitations data in the period
10 days before and during each flood event were used as model output. The time lag of 0–9 days was
taken into account in the research. Correlation analysis was conducted to determine the degree of
randomness for the time series of input and output parameters. For establishing a potential causative
link, machine learning classification predictive modeling was applied. Two approaches, the decision
tree, and the random forest were used. We analyzed the accuracy of classification models forecast from
0 to 9 days in advance. It was found that the most important factors for flood forecasting are proton
density with a time lag of 9, differential proton flux in the range of 310–580 keV, and ion temperature.
Research in this paper has shown that the decision tree model is more accurate and adequate in
predicting the appearance of precipitation-induced floods up to 9 days ahead with an accuracy of 91%.
The results of this study confirmed that by increasing technical capabilities, using improved machine
learning techniques and large data sets, it is possible to improve the understanding of the physical
link between the solar wind and tropospheric weather and help improve severe weather forecasting.

Keywords: solar activity; precipitation; floods; machine learning; classification; modeling

MSC: 85-10

1. Introduction

The occurrence of extreme weather events, such as heavy precipitation causing floods,
represents some of the most significant natural hazards with major social, economic, and
environmental impacts [1]. In particular, floods can lead to loss of life, property damage,
crop destruction, and livestock loss. Long-term impacts, caused by infrastructure damage,
comprise disruptions in the supply of clean water and electricity, damage to the transport,
communication, and health infrastructure, as well as deterioration of physical and mental
health due to population displacement. Even though our understanding of the processes
that lead to heavy precipitation that can cause floods has advanced, due to the large
negative impacts, there is a growing need for improved methods of forecasting extreme
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weather and hydrological events. Although there are many factors affecting weather and
climate across a variety of atmospheric scales, the possible influence of external factors has
been widely reported.

A possible relationship between solar activity and the Earth’s climate has been exam-
ined over the last 200 years [2], while this subject came into the focus of scientific interest
at the beginning of the nineties of the 20th century [3]. Various forms of solar activity,
such as solar flares, coronal mass ejections, and fast solar wind, cause variability of solar
energy reaching the Earth and affect atmospheric parameters directly or indirectly [4,5].
Although the existence of a link between solar activity and climate variables has not been
widely accepted, there is a series of papers investigating empirical relationships between
them, such as [6–13], etc. A detailed list of papers demonstrating the connection between
solar and atmospheric processes is provided in [14,15]. Numerous hypotheses have tried
to explain the mechanism of solar influence on the Earth’s atmosphere. The simplest
explored mechanism of the Sun–Earth connection is through direct heating of the Earth by
solar radiation, the total solar irradiance. It is claimed that periods with many sunspots
are related to higher irradiance, especially in the ultraviolet part (UV) of the spectrum,
influencing tropospheric temperature and wind [2,16,17]. Large changes in UV radiation
coming from the sun affect the amount of ozone in the stratosphere, warming, atmospheric
circulation, and the strength and stability of the polar vortex. These disorders are transmit-
ted to the troposphere and affect mid-latitude storms, often over the north Atlantic and
Europe [15,18,19]. Another major possible mechanism includes galactic cosmic rays that
are modulated by solar and terrestrial activity. It is indicated that galactic cosmic rays can
trigger cloud condensation nuclei formation and enhance cloudiness [15,20–22].

It is known that the weather at mid latitudes largely depends on the process of
formation, evolution, and movement of cyclones and anticyclones in the atmosphere.
Therefore, the study of the influence of solar activity and related interplanetary environment
disturbances on the development of extratropical cyclones has prognostic significance.
There is a series of papers demonstrating changes in cyclonic activity in response to
geomagnetic activity driven by solar activity. Tinsley [23] discussed possible triggering
mechanisms for condensation and freezing within convective clouds of the cyclone induced
by solar-modulated energetic particles. Veretenenko and Thejll [24,25] revealed that solar
proton events, with energies above 90 MeV, may intensify cyclonic activity at middle
latitudes in the cold period of the year (October–March). Stozhkov et al. [26] investigated
the effect of charged particle fluxes in the atmosphere on the intensity of precipitation in the
territory of the former USSR and found an increase in precipitation intensity during solar
proton penetration into the Earth’s atmosphere of ~10%. Bhattacharyya and Narasimha [27]
analyzed four solar activity indices and seven major Indian monsoon precipitation time
series, over two distinct test periods of low and high solar activity, respectively, each
comprising three complete solar cycles. They found that the average precipitation is higher
in all seven precipitation indices during the periods of greater solar activity, at confidence
levels varying from 75% to 99%, being 95% or greater in three of them. Prikryl et al. [28]
revealed that arrivals of solar wind high-speed streams from coronal holes can be followed
by heavy precipitation causing floods and flash floods.

Exploring the time differences between different solar events and atmospheric re-
sponses is also important, but there is no common consent about it in the recent literature.
According to Lilensten and Bornarel [29], in conditions where a coronal hole or active
region approaches the geo-efficient position, solar wind becomes stronger, while its effects
on the Earth can be expected in 2–3 days. Artamonova and Veretenenko [30] analyzed
the short-term variation in galactic cosmic rays and found a delay period of 3–4 days for
tropospheric pressure field variation in extratropical latitudes of the northern hemisphere
after the event onset. Todorović and Vujović [5] studied the impact of coronal holes and
active regions on cold fronts, precipitation, and temperature decrease on the surface and
higher layers in the Belgrade region (Serbia) and found that the maximum amount of pre-
cipitation occurs 14 days after the solar wind is observed. Prikryl et al. [28,31–35] indicated
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that extratropical cyclones and heavy precipitation causing floods tend to occur within
several days of high-speed solar winds coming from the coronal hole.

Despite the advances made in forecasting and improved understanding of complex
atmospheric and hydrologic conditions and processes, predictions of extreme precipitation
events and floods continue to present difficult challenges. Among the new methods, ma-
chine learning (ML) algorithms are increasingly used in environmental sciences, especially
in hydrology.

Machine learning is one of the most famous areas of artificial intelligence that has
recently been used in geography, aiming to simulate human intelligence by recognizing
patterns in an intelligent way [36]. It presents a set of software applications composed of
engineering, mathematics, and statistics that can learn from data and create outputs by
using minimal human intervention [37]. There are three areas of ML: supervised learning,
unsupervised learning, and reinforcement learning [38]. Supervised learning uses labeled
datasets to train ML algorithms to classify data or predict the outputs accurately. It can be
categorized into regression and classification models. While the regression model predicts
a continuous output, classification refers to a predictive modeling problem where a class
label is predicted for a given example of input data. In other words, classification predictive
modeling is based on identifying the patterns in the data that group examples into the
category, or class labels.

Different ML techniques are widely used due to the increasing availability of different
data sets and the complexity of hydrological processes that are difficult to model with linear
or undemanding nonlinear statistical methods. A large number of ML applications have
already appeared in the hydrological literature in recent years. A detailed list of papers
demonstrating the use of ML in hydrology is provided in [39–43]. ML techniques have
already shown superior performance in solving a number of hydrological problems. For
example, Schmidt et al. [44] used two popular ML algorithms, artificial neural networks,
and random forests, to analyze a large flood data set across Germany and showed that
ML can capture basic hydrological principles well and that ML models achieve higher
prediction accuracy than linear regression, while Cappelli et al. [45] demonstrated high
usability of ML feature importance technique to identify the role of sub-basins in hydrolog-
ical response. The use of ML techniques in space weather is not new, but it is in expansion
in the last several years. Advances in ML techniques have led to a range of new tools
to better solve traditional and new challenging problems from a data-driven perspective.
Bearing in mind that there are numerous data from satellites and observatories that monitor
cosmic weather processes between the Sun and the Earth, the use of ML in determining the
impact of solar activity on the Earth’s climate offers a new opportunity to learn from the
data. Moreover, the problem of space weather is very complex and our understanding of
the basic processes of space weather is still too limited to properly describe the physical
and mathematical relationships using traditional methods [46]. In this paper, we focused
on establishing hidden dependencies between precipitation-induced floods in the United
Kingdom (UK) and the flows of particles from the Sun based on 20 flood events in the UK
in the period October 2001–December 2019. To justify and also quantify the relationship
we are advocating, we used machine learning classification predictive modeling. As a
result of establishing the hidden dependencies between precipitation-induced floods and
solar parameters, a forecast model was produced. This “directly from the data” learning
approach provided the opportunity to uncover hidden knowledge about relationships
within the data and to deepen our understanding of physical processes.

2. Materials and Methods
2.1. Study Area

The territory of the UK has a dense drainage network, with about 200,000 km of
watercourses draining around 1500 discrete basins (Figure 1) [47,48]. The numerous water-
courses are short, shallow, and prone to significant disturbances caused by anthropogenic
influence. The river regime is influenced by climatic conditions (above all precipitation, air
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temperature, and insolation), geological features of individual catchments (their perme-
ability), terrain morphology, and anthropogenic factor (riverbed changes, water utilization,
land-use changes, etc.).
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Kingston et al. [49] emphasized that winter NAO (North Atlantic Oscillation) in-
fluences river flows by controlling moisture and heat advection over the UK. Laizé and
Hannah [50] pointed out that a higher NAO index enhances westerly air flows across the
UK, leading to higher than average precipitation and temperature and, in turn, higher
river flows (and vice versa for a lower NAO index). In contrast to uplands, lowland basins
receive less precipitation and therefore the influence of other factors (such as permeability,
elevation, and physical basin properties) also has an impact on the flow regime. Due to
the wide variety of climate and basin types in the UK, rivers range from mountain torrents
draining headwaters receiving up to five meters of precipitation a year to the lowland
watercourses being groundwater-fed in southern and eastern England where precipitation
is lower [48]. Precipitation in the UK is relatively evenly distributed throughout the year,
with a modest tendency toward an autumn/winter maximum, especially in the western
basins. However, seasonal variations in air temperature and the amount of sunlight cause
high evaporation in the summer half of the year (April–September). This conditions the
intra-annual distribution of flows in rivers with natural regimes. It is observed that the
maximum flows are registered during the winter, and the minimum is in the summer or
autumn. It is noteworthy that urban watercourses have been significantly modified and are
not always in line with this pattern. For example, low flows can be artificially amplified (by
overflowing reservoirs, transfers between basins, etc.). Hannaford and Buys [51] analyzed
river flow trends in 89 basins with almost natural flow regimes in the UK for four standard
seasons in the period 1969–2008. Their findings are the following: an overall increase in
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winter river flows (with the largest increases in northern and western upland basins, while
low flows decreased in some western basins); a regionally coherent decrease in spring
flows; increasing summer flows (in the north and west basins), and primarily weak positive
and negative trends (in the English lowlands); an increase in autumn flows (particularly
for high flows in northeast, central, and southwest parts of the UK). Observed trends
(such as increasing winter flow and decreasing spring flows) may be influential for water
management, and the tendency toward higher flows may reflect an increase in flood risk.

2.2. Data Description

In this study, several data sets and data sources were used to test the possible relation-
ship between solar activity and precipitation-induced floods. Data from 20 independent
data blocks for different flood events (r) were used for analysis. Each data block consisted
of separate data sets (DSs):

• Flood (F): DSr
F (date, precipitations (mm), days from the beginning of the flood).

• Integral proton flux (IPF, p/cs2 − sec − ster): DSr
IPF = (Date, (IPF > 10 MeV),

(IPF > 30 MeV) ).
• Differential electron and proton flux (DF, p/cs2-sec-ster). These blocks contained

different sun energy characteristics for different periods during different flood events.
The measured ranges for differential electron flux were 38–53 keV and 175–315 keV
for all analyzed floods, while the measured ranges for differential proton flux varied
depending on the period in which the flood occurred. The differential proton fluxes
were measured in the following ranges: 47–65 keV, 47–68 keV, 65–112 keV, 112–187 keV,
115–195 keV, 310–580 keV, 761–1220 keV, 795–1193 keV, 1060–1900 keV, and 1060–
1910 keV. However, the only common range for all flood events was 310–580 keV.

• Solar wind (SW): DSr
SW= (Date, Proton Density

(
particles

cc

)
, Bulk Speed

(
km

s

)
,

Ion Temperature (degrees K)).
• Radio flux of 10.7 cm (RF, solar flux units): DSr

RF = (Date, Radio Flux).

The flood data used in this study were taken from the Emergency Events Database
Center for Research on the Epidemiology of Disasters (EM-DAT database). This database
was launched by the Center for Research on the Epidemiology of Disasters (CRED) in
1988 with the initial support of the World Health Organization (WHO) and the Belgian
Government [52]. EM-DAT database contains essential core data on the disasters in the
world from 1900 to the present day and it is compiled from various sources. Data collection
in the EM-DAT database was carried out according to the place of origin, development,
and cause of disasters, and the classification was made according to the one proposed by
the United Nations. For a disaster to be entered into the EM-DAT database, at least one of
the following criteria must be fulfilled: ten or more reported deaths; one hundred or more
reported people affected; declaration of a state of emergency; and call for international
assistance [52]. In this study, twenty floods in the UK recorded in the EM-DAT database
were selected for the period 2001–2019. One flood was registered in 2001, three in 2002, one
in 2004, three in 2007, two in 2008, one in 2009, five in 2012, and one in 2014, 2015, 2017, and
2019. Out of twenty selected floods in the EM-DAT database, fourteen were classified as
riverine floods, three were flash floods, and the remaining three were not defined in more
detail. The geographical locations of the studied flood events are presented in Figure 2.
Regarding the regional aspect, out of twenty analyzed floods, eighteen occurred in England,
five in Wales, four in Scotland, and two in Northern Ireland. According to the seasons,
most of the floods occurred in autumn (eight), followed by summer (seven), winter (three),
and spring (two). The duration of the floods ranged from one day (in July 2002, December
2012, and December 2015), to twenty-eight days (November–December 2012). The average
duration of the selected floods was 4.6 days. Areas endangered by floods ranged from
60 km2 to 126,150 km2 and occurred in numerous rivers basins, such as Thames, Severn,
Stour, Exe, Ouse, Dearne, Aire, Avon, Calder, Don in Yorkshire, etc.
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Daily precipitation data for ten days before the flood event and during the flood event
were used from the European Climate Assessment and Dataset [53,54]. For each flood
event, we collected precipitation data from all the stations located in the flood plain. The
data from a total of 123 measuring stations were used. The source for integral proton
flux, differential electron and proton flux, proton density, bulk speed, and ion temperature
was the Advanced Composition Explorer (ACE) satellite [55]. This satellite measures the
changes in the solar wind parameter that is directed toward the Earth, while its position
is always between the Sun and the Earth. Available ranges for differential proton flux
varied depending on the period in which the flood occurred.The data source for the 10.7 cm
radio flux was The Laboratory for Atmospheric and Space Physics [56] at the University of
Colorado Boulder (CU) for the period 2001–2004 and Space Weather Canada [57] for the
period 2007–2019. The solar radio flux at 10.7 cm (2800 MHz) is an excellent indicator of
solar activity. It is also called the F10.7 index. The F10.7 radio emissions originate high in
the chromosphere and low in the corona of the solar atmosphere [58]. These parameters
represent solar wind and activity variability and are used in previous research. All the
parameters used in this study are used in the investigation of dependencies between
forest fires and solar activity [59,60], while some of them (IPF > 10 MeV, solar wind, and
10.7 cm radio flux) were used in the research of the relationship between solar activity and
hurricanes [10,61]. Since previous research showed that a causal link exists, in this research
we attempted to examine if there is a connection between these parameters of solar activity
and precipitation-induced floods.

2.3. The impact of Precipitation on the Occurrence of Floods

To determine the influence of precipitation on flood occurrences, the daily precip-
itation amount was analyzed on the day of each flood event, as well as for each of the
10 days preceding the floods. For this analysis, the design of superposed epochs was
used [62]. Furthermore, a one-way analysis of variance was applied to examine if there
is a significant influence of precipitation on flood occurrences. It can be concluded that
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there is a statistically significant difference between the amounts of precipitation during
the observed days (Table 1).

For the determination of the day in which the precipitation was significantly different
from the precipitation on each of the remaining days, Hochberg and Games–Howell post-
hoc tests were applied. These tests were chosen considering the results of Levene’s test,
which showed that there is no equality of variances for the analyzed variables [63,64].

Table 1. Results of the one-way analysis of the variance of the amount of precipitation on the day
when the flood occurred and during the ten days preceding it.

Sum of Squares df Mean Square F Sig.

Between groups 5018.900 10 501.890 11.665 0.000
Within groups 9465.810 220 43.026

Total 14,484.710 230

The analysis showed that the average amount of precipitation on the day of the flood and
the day before the beginning of the flood (14.3 mm and 17.4 mm, respectively) is significantly
higher than the amount of precipitation on the other days before the beginning of the flood
(1.8–5.9 mm). Based on the data from Table 2, the amount of precipitation on the day of
the flood and the day preceding it is significantly higher (significance level of 0.05) than
the amount of precipitation in all the remaining days that preceded them (according to the
Hochberg test). According to the Games–Howell test, the amount of precipitation on the day
of the flood is statistically significantly higher than that which falls 10, 8, 7, 6, and 5 days
before the flood. Therefore, it can be concluded that the amount of precipitation on the day
of the flood, and the day preceding it, plays a significant role in the occurrence of floods. For
the UK area, Cotterill et al. [65] and Kendon [66] reached similar findings.

Table 2. Results of post-hoc tests of the amount of precipitation on the day when the flood occurred
and during the ten days preceding it (statistically significant values are in bold).

Post Hoc Test Hochberg Games–Howell

Day −1 0 −1 0

−10 0.000 0.000 0.000 0.000
−9 0.000 0.000 0.026 0.008
−8 0.000 0.000 0.003 0.002
−7 0.000 0.000 0.008 0.004
−6 0.000 0.000 0.007 0.003
−5 0.000 0.000 0.005 0.003
−4 0.000 0.000 0.018 0.007
−3 0.002 0.000 0.045 0.015
−2 0.002 0.000 0.049 0.016
−1 0.999 0.997
0 0.999 0.997

2.4. Preliminary Processing of Input Data and Correlation Analysis

The parameters of solar activity were observed for 10 days before and during the
flood. Data on solar activity and flood were recorded at different time intervals. In the case
of solar parameters, the data are presented by averaged values for a certain time interval
(1 and 5 min), or measurements are performed several times per day (for F10.7 cm). The
information about time sampling is provided in Table 3. According to their sources, all the
data were grouped in corresponding data sets (DSs).
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Table 3. Time intervals of input and output features.

Data Set Time Interval

DSr
IPF ,DSr

DF 5 min
DSr

SW 1 min
DSr

RF 3 per day
DSr

F 1 per day

For further analysis, the data sets for each flood event were grouped into separate data
sets (DSr), with a maximum interval of 1 day. As a result, 20 separate DSs were received
for each flood event:

DSr = DSr
IPF ∪ DSr

DF ∪ DSr
SW ∪ DSr

RF ∪ DSr
F (1)

where r is the river flood event index. To obtain the final data set for each flood event, we did
not use the absolute values as input features, but we first performed binary classification
on data. The days of precipitation were marked as True (1), while the days without
precipitation as False (0). The input feature values are True/False for each field, taking
into account the lag, while the target is also a binary field. The positions of the peaks for
the solar activity fields were calculated (Figure 3), and the beginning and end of the flood
event were recorded. The position of the peaks was determined programmatically with
subsequent manual verification. After binarization, a lag transformation of these binary
data sets was performed. To achieve this, each input feature was duplicated and shifted
vertically by the required number of lags. The forecast model for each flood event can be
formalized as follows:

Precipitationsr = F(Xr1, . . . , Xrm, X1,t−1, . . . , Xm, t−1, . . . , X1,t−n, . . . , Xm, t−n) (2)

where r is the river flood index, m is the number of input parameters, and n is the maxi-
mum lag.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 20 
 

 

The information about time sampling is provided in Table 3. According to their sources, 
all the data were grouped in corresponding data sets (DSs). 

Table 3. Time intervals of input and output features. 

Data Set Time Interval 𝐷𝑆 , 𝐷𝑆  5 min 𝐷𝑆   1 min 𝐷𝑆   3 per day 𝐷𝑆   1 per day 

For further analysis, the data sets for each flood event were grouped into separate 
data sets (𝐷𝑆 ), with a maximum interval of 1 day. As a result, 20 separate DSs were re-
ceived for each flood event: 𝐷𝑆 = 𝐷𝑆 ∪ 𝐷𝑆 ∪ 𝐷𝑆 ∪ 𝐷𝑆 ∪ 𝐷𝑆  (1)

where r is the river flood event index. To obtain the final data set for each flood event, we 
did not use the absolute values as input features, but we first performed binary classifi-
cation on data. The days of precipitation were marked as True (1), while the days without 
precipitation as False (0). The input feature values are True/False for each field, taking 
into account the lag, while the target is also a binary field. The positions of the peaks for 
the solar activity fields were calculated (Figure 3), and the beginning and end of the flood 
event were recorded. The position of the peaks was determined programmatically with 
subsequent manual verification. After binarization, a lag transformation of these binary 
data sets was performed. To achieve this, each input feature was duplicated and shifted 
vertically by the required number of lags. The forecast model for each flood event can be 
formalized as follows: Precipitations  = 𝐹 𝑋 , … , 𝑋 , 𝑋 , , … , 𝑋 , , … , 𝑋 , , … , 𝑋 ,  (2)

where r is the river flood index, m is the number of input parameters, and n is the max-
imum lag. 

 
Figure 3. Example of setting peaks for (a) DF 310-580keV, (b) proton density, and (c) ion tempera-
ture). Read crosses represent peaks. 

Since the input data sets for different flood events have different features for dif-
ferential proton flux, the first attempt was to find independent functional dependencies 
for each flood event separately. To achieve this, a correlation analysis was performed 
between input factors and precipitation. The results in Table 4 show that there are no 
uniform linear relationships between factors for all flood events. Thus, in some flood 
events, there is a high correlation for one of the factors (e.g., 61–1220 keV, R = 0.68), while 
it is completely absent for other flood events. This indicates the randomness of this de-
pendence. 

Table 4. Maximum values of correlation coefficients between input factors and precipitations ( / 
means no peaks, - means no data). 

Figure 3. Example of setting peaks for (a) DF 310–580 keV, (b) proton density, and (c) ion temperature).
Read crosses represent peaks.

Since the input data sets for different flood events have different features for differential
proton flux, the first attempt was to find independent functional dependencies for each
flood event separately. To achieve this, a correlation analysis was performed between input
factors and precipitation. The results in Table 4 show that there are no uniform linear
relationships between factors for all flood events. Thus, in some flood events, there is a
high correlation for one of the factors (e.g., 61–1220 keV, R = 0.68), while it is completely
absent for other flood events. This indicates the randomness of this dependence.



Mathematics 2023, 11, 795 9 of 20

Table 4. Maximum values of correlation coefficients between input factors and precipitations (/
means no peaks, - means no data).
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2001_0645 0.23 0.23 0.18 0.18 0.68 - - 0.68 - 0.68 0.68 - 0.68 - 0.41 0.41 0.64 0.18

2002_0463 0.19 0.52 0.19 0.52 - - 0.19 0.29 - 0.29 0.19 - 0.19 - 0.29 / 0.29 0.24
2002_0488 / / 0.43 0.43 - - / 0.19 - 0.19 0.18 - 0.43 - 0.43 0.82 / 0.19
2002_0774 0.15 0.13 0.15 0.1 - 0.15 - - 0.15 - 0.13 - 0.13 - 0.15 0.15 0.16 0.13
2004_0423 0.26 0.33 0.33 0.26 - / - - 0.33 0.11 0.26 - 0.17 - 0.77 0.33 0.26 0.17
2007_0201 0.26 0.3 0.21 / - 0.34 - - 0.26 0.21 0.11 - 0.26 - 0.21 0.38 0.47 0.17
2007_0247 / 0.15 0.41 0.27 - 0.42 - - 0.27 0.42 0.22 - 0.62 - / 0.22 0.15 0.23
2007_0278 0.45 0.65 / 0.21 - 0.21 - - 0.11 0.21 / - 0.45 - / 0.43 / 0.44
2008_0055 / 0.1 0.27 0.22 - 0.24 - - 0.27 0.22 0.42 - 0.3 - 0.22 0.16 0.19 /
2008_0381 0.27 / 0.3 / - 0.13 - - 0.53 0.27 / - 0.82 - 0.3 0.3 0.13 0.27
2009_0497 0.34 / 0.33 0.33 - 0.44 - - 0.34 0.44 0.34 - 0.44 - 0.58 0.15 0.15 /
2012_0446 0.35 0.35 0.25 0.3 - 0.25 - - 0.17 0.29 - / - / 0.17 0.29 / 0.2
2012_0488 0.24 0.24 0.13 0.13 - 0.81 - - 0.39 0.36 - 0.46 - 0.46 / / 0.46 0.36
2012_0548 0.41 0.13 / / - / - - / / - / - 0.41 0.21 0.16 0.41 0.16
2012_0549 0.26 0.26 0.26 0.4 - 0.26 - - 0.4 0.4 - 0.4 - 0.67 0.26 0.4 0.26 0.13
2012_0552 0.2 / 0.34 0.19 - / - - 0.21 / 0.11 - 0.15 - / 0.51 / /
2013_0572 0.1 / / 0.18 - 0.18 - - 0.31 0.16 0.42 - / - 0.42 0.3 / 0.1
2015_0561 0.24 0.54 0.38 0.54 - 0.24 - - 0.54 0.52 0.54 - / - 0.52 0.52 0.54 0.24
2017-0490 0.29 0.21 0.14 0.28 - 0.29 - - 0.2 0.2 0.21 - 0.65 - 0.24 0.24 0.21 0.15
2019_0568 0.12 0.12 0.38 0.38 - 0.6 - - 0.12 / 0.49 - / - 0.68 0.48 0.68 0.53

2.5. Machine Learning and Forecast of Precipitation

Classification ML models predict categorical class labels based on specific data sets.
The classification algorithms work by using input data sets to create a mapping function.
Generally, the input data set is divided into training and testing datasets [67]. The training
data set contains observations whose classifications are already known so the algorithm
can use them as a guide. This helps determine output variables (or predictions) in the
testing data set with varying degrees of accuracy. In other words, the training dataset has
an output variable that needs to be predicted or classified in the testing data set.

In ML, there are many different types of algorithms for classification and no strict
rules for their selection. In this study, we used the decision tree and ensemble classification
to allow a clear understanding and justify the classification decision. The decision tree
algorithm is one of the most popular ML algorithms. It uses tree-like structures and their
possible combinations to solve a particular problem. The decision tree algorithm should
identify the features that contain the most information about the target feature and by using
the if–then rules divide the data set into subsets based on that feature, to make the resulting
nodes as clean as possible. In the tree-like structure, each internal node presents a test on a
characteristic, each branch presents the outcome of the test, each leaf node presents a class
label, and the paths from the root node to the leaf node present the classification rules. The
rules are learned sequentially using the training data one by one. Each time a rule is learned,
the tuples covering the rules are removed. The decision tree algorithm has the goal of
creating a model that predicts the target variable by learning simple decision-making rules
derived from the characteristics of the previous data. The main advantages of choosing this
method are easy interpretation, handling various data types, and the ability to visualize the
result. Disadvantages are the tendency to overfit, long duration, and greater complexity
than other algorithms. The primary challenge in implementing a decision tree is to identify
the attribute of the root node at each level. This process is known as attribute selection.
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There are different attribute selection measures, and one of them is the Gini index [68]. The
Gini index measures how often a randomly chosen element would be incorrectly classified,
that is, it calculates the probability of a specific feature that is classified incorrectly when
selected randomly. This means that an attribute with a lower Gini index should be preferred.
The strategy used to select the split in each node is used to find the best distribution.

Ensemble methods combine the predictions from multiple models to derive better
predictive performance than the one that could be obtained from any of the constituent
learning algorithms alone. There are three different ways to build model ensembles, in-
cluding boosting, bagging, and stacking [69,70]. In this study, 3 different ML algorithms
(classifiers, Table 5) with different parameters, and 3 ensembles were used [69]. More-
over, we tested ensembles of models based on boosting (AdaBoost classifier and gradient
boosting classifier) and bagging (bagging classifier).

Table 5. List of classifiers and ensembles that were used in calculations.

Classifiers

1. DecisionTreeClassifier()
2. RandomForestClassifier(max_depth = 5, max_features = 1, n_estimators = 10, 100)
3 KNearestNeighborsClassifier(n_neighbors = 3)

Ensembles

4. AdaBoostClassifier(n_estimators = 100, random_state = 0)
5. GradientBoostingClassifier(learning_rate = 1.0, max_depth = 1, random_state = 0)
6. BaggingClassifier(base_estimator = SVC(), random_state = 0)

3. Results and Discussion
3.1. Lag Analysis

According to our hypothesis, the period of delay between the flood and the outbreak
of solar activity can be up to 10 days. To test this hypothesis, the following experiment
was performed. All classification models were fitted and tested for input data that did not
contain a time delay. Next, the data containing a time delay of one day were added to the
input parameters. After that, the models were refitted, and the recall metric was calculated.
These iterations lasted up to 9 lags due to the fact that we only had data available for
10 days before the flood. Shifting the data by 10 days and deleting the 10 empty records that
should appear would result in no flood days remaining in the target field. Accordingly, this
would make classification impossible. Formally, the tasks of classification were reduced to
the following form:

lag(0) : Flood = F(X1, . . . , X9) (3)

lag(1) : Flood = F(X1, . . . , X9, X1,t−1, . . . , X9, t−1) (4)

lag(9) : Flood = F(X1, . . . , X9, X1,t−1, . . . , X9, t−1, . . . , X1,t−9, . . . , X9, t−9) (5)

3.2. Gini Index

The Gini index, also known as the Gini impurity, is very important for this classification.
It takes values between 0 and 1, where 0 means absolute equality (all the elements belong to
a specified class or only one class exists there), and 1 denotes complete inequality (random
distribution of elements across various classes). It is used to select the best feature at each
step. The impurity of the feature is the size of the difference between the number of points
that the feature has and the number of points that the feature does not have. If the number
of points that the feature has is equal to the number of points that the feature does not have,
then the feature impurity is zero.

The Gini index can be represented by the following formula:

Gini = 1−
c

∑
i=1

(pi)
2 (6)
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where c is the number of classes and pi is the probability associated with the i-th class.
It means that if we randomly select two features from the dataset, they have to be of
the same class and the probability is 1 if the dataset is pure. If the Gini value is higher,
the homogeneity of data is higher. The value of 0.5 on the Gini index shows an equal
distribution of elements over some classes. While designing the decision tree, the features
possessing the least value of the Gini index would be preferred.

3.3. Evaluation Metrics

Classification predictive modeling algorithms are evaluated based on their results.
There are four different metrics for estimating the fitted model’s quality: “accuracy”,
“precision”, “recall”, and “f1”. In this study, we used the metric called “accuracy” to assess
the fitted model’s quality, which is related to the recall metric. In our case, it is important to
predict the precipitation. Thus, the mistake of the model, when, according to the forecast,
there is no precipitation—but it actually happens—is critical. The “recall” metric is used
to assess such situations. This metric assesses the accuracy of positive predictions. Other
metrics take into account the forecast of both the onset of the precipitation and its absence.
Therefore, these metrics will a priori have higher values of accuracy, but they are not
adequate in our case.

The “recall” is the ratio:
recall = tp/(tp + fn), (7)

where tp is the number of true positives and fn is the number of false negatives. The recall
is the ability of the classifier to intuitively find all the positive samples.

The accuracy of the model was determined by using a cross-validation that allows
the training set to be divided randomly into three parts acting as the test [71]. This means
that the classifier fitted three times on three different data sets, while the accuracy of both
training and test sets was calculated and averaged. The value analysis of these metrics
enables the accessing of accuracy, adequacy, and availability of overfitting. This means
that the decision tree algorithm keeps going deeper and deeper to reduce the error of the
training set, resulting in the increased test-set error at the same time. As a consequence, it
further reduces the accuracy of prediction in the model.

The obtained results are presented in Table 6. The results allow us to analyze the
dynamics of metric changes in the consistent addition of new lags to the input parameters.
Recall values were compared for test and training sets. The analysis of the adequacy of the
models was evaluated on the following grounds:

• If the error of the test and training sets is close (small variance) it indicates that the
model is well fitted and predicts unknown values at the same level as the known ones.
The absolute value shows how accurate such a model is.

• If the accuracy on the training set reaches 1, and on the test set it is close to 0.5, it
indicates overfitting. That is, the known data are perfectly predicted, and the unknown
ones are guessed (50:50) and are impossible to predict.

Table 6 shows all the classifiers for small lags have lower accuracy or overfitting.
However, when the lag is increased up to 7–9, the accuracy increases significantly, and the
models become quite adequate and accurate. This means that there is indeed a significant
time lag between a solar flare and precipitation.
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Table 6. Accuracy for training and test sets with Gini index criterion at consecutive addition of lags and error variance between test and training data sets.

Flood Event
Accuracy for the Training Set at Consecutive Addition of Lags Accuracy for the Test Set at Consecutive Addition of Lags Error Variance between Test and Training Data Sets

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2001_0645 0.87 1.00 0.87 0.87 1.00 0.80 1.00 1.00 0.87 1.00 1.00 0.60 1.00 1.00 0.80 1.00 1.00 0.80 1.00 1.00 0.13 0.13 0.13 0.07 0.07 0.07 0.07 0.07 0.07 0.00
2002_0463 0.86 1.00 1.00 1.00 0.86 1.00 0.86 1.00 1.00 1.00 0.25 0.50 0.75 0.75 1.00 1.00 1.00 0.75 0.75 1.00 0.20 0.15 0.15 0.08 0.08 0.08 0.08 0.08 0.08 0.00
2002_0488 1.00 0.87 1.00 0.87 1.00 0.87 1.00 1.00 1.00 0.87 0.80 0.80 0.40 0.40 0.40 0.80 0.80 0.60 0.80 1.00 0.21 0.21 0.21 0.21 0.18 0.18 0.13 0.13 0.13 0.07
2002_0774 0.93 0.75 0.93 1.00 1.00 0.93 0.93 1.00 0.93 1.00 0.87 1.00 0.87 0.75 0.87 0.87 1.00 0.87 1.00 0.87 0.08 0.08 0.08 0.08 0.08 0.08 0.04 0.04 0.04 0.04
2004_0423 0.93 0.87 1.00 1.00 1.00 1.00 0.87 1.00 1.00 0.87 0.87 0.25 0.75 1.00 0.75 0.75 0.75 0.75 0.75 1.00 0.19 0.19 0.14 0.14 0.14 0.14 0.14 0.08 0.08 0.08
2007_0201 0.93 1.00 0.91 1.00 0.91 1.00 1.00 0.91 1.00 1.00 0.87 0.83 0.67 0.83 0.83 0.83 0.50 1.00 0.83 0.50 0.15 0.15 0.15 0.10 0.10 0.10 0.10 0.10 0.06 0.06
2007_0247 0.83 0.83 0.92 0.92 1.00 1.00 0.92 1.00 1.00 0.92 0.57 0.71 0.71 0.71 0.71 0.00 0.71 0.86 0.71 0.86 0.22 0.22 0.19 0.19 0.17 0.17 0.13 0.13 0.13 0.13
2007_0278 1.00 0.90 1.00 0.90 0.90 1.00 1.00 0.80 1.00 0.90 0.80 0.80 0.40 0.80 0.60 1.00 0.40 1.00 0.60 1.00 0.20 0.20 0.20 0.20 0.20 0.16 0.16 0.16 0.12 0.12
2008_0055 1.00 1.00 1.00 0.87 1.00 0.87 1.00 1.00 1.00 1.00 1.00 0.80 0.60 0.60 0.60 0.80 0.80 0.20 1.00 1.00 0.18 0.18 0.18 0.18 0.13 0.13 0.07 0.07 0.00 0.00
2008_0381 0.93 1.00 0.93 1.00 0.86 1.00 0.86 1.00 1.00 1.00 0.87 0,62 0.75 0.75 0.62 0.62 0.87 0.75 0.87 0.87 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.08 0.08 0.08
2009_0497 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.80 0.60 0.80 0.60 0.60 0.80 1.00 0.80 0.80 1.00 0.17 0.17 0.12 0.12 0.07 0.07 0.07 0.07 0.07 0.07
2012_0446 0.90 1.00 1.00 0.80 1.00 1.00 1.00 0.80 1.00 1.00 0.80 0.80 0.40 0.60 0.80 0.80 0.60 1.00 0.80 1.00 0.16 0.16 0.16 0.16 0.12 0.12 0.12 0.12 0.06 0.06
2012_0488 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.50 1.00 0.50 1.00 0.75 0.75 0.75 0.75 0.23 0.23 0.23 0.20 0.20 0.15 0.15 0.15 0.08 0.08
2012_0548 1.00 0.87 1.00 1.00 0.87 1.00 0.87 1.00 0.87 1.00 0.75 0.75 0.75 0.50 1.00 0.50 0.75 0.75 1.00 1.00 0.22 0.22 0.19 0.19 0.19 0.14 0.14 0.08 0.08 0.00
2012_0549 1.00 1.00 0.87 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.75 0.75 1.00 1.00 0.75 1.00 0.75 0.75 0.75 1.00 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.08 0.08 0.08
2012_0552 0.88 0.96 0.88 0.92 0.84 0.96 0.84 0.96 0.88 0.92 0.69 0.31 0.77 0.62 0.54 0.62 0.69 0.46 0.62 0.62 0.22 0.22 0.21 0.21 0.21 0.19 0.19 0.19 0.19 0.19
2013_0572 0.92 0.92 0.92 0.92 0.85 0.92 0.85 0.92 0.92 1.00 0.72 0.57 0.14 0.57 0.71 0.43 0.57 0.57 0.57 0.86 0.23 0.23 0.23 0.21 0.21 0.19 0.19 0.19 0.16 0.16
2015_0561 1.00 0.86 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.75 0.50 0.75 0.75 0.75 1.00 1.00 0.20 0.20 0.15 0.15 0.15 0.15 0.08 0.08 0.00 0.00
2017-0490 0.87 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 1.00 0.80 0.20 1.00 1.00 1.00 0.12 0.12 0.12 0.12 0.12 0.06 0.06 0.00 0.00 0.00
2019_0568 0.86 1.00 1.00 0.75 1.00 1.00 0.87 1.00 1.00 1.00 0.75 0.25 0.50 1.00 0.25 0.50 0.25 0.50 0.25 0.75 0.24 0.24 0.22 0.22 0.22 0.19 0.19 0.14 0.14 0.08
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3.4. Forecasting Models

According to the previous analysis, there are time delays between solar activity and
precipitation. To build a precipitation forecast for n days in advance, it is necessary to
extract data with lags (0 − (n − 1)) from the input parameters of all the models:

Forecast(1 day) : Flood = F(X1,t−1, . . . , X9, t−1, . . . , X9, t−1, . . . , X1,t−9, . . . , X9, t−9) (8)

Forecast(9 days) : Flood = F(X1,t−9, . . . , X9, t−9) (9)

As can be seen, the number of input features decreases, which leads to the reduction
of forecast accuracy. The accuracy of classification models forecast from 0 to 9 days in
advance with the Gini index criterion was analyzed (Figure 4). This analysis showed that
the accuracy of the decision tree varies by one level within the model error. This approach
allows us to build a decision tree for forecasting any lag. Therefore, in this study, the
forecast for lags from 0 to 9 requires the construction of 10 different decision trees.
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the model accuracy score with the Gini index criterion is higher than 0.7 in 75%, 80%, and
90% for 7, 8, and 9 days in advance, respectively. Furthermore, the average accuracy of
precipitation models forecast for 9 days in advance is about 91% for the given set of data.

This allows us to determine the most important classification features in these cases.
According to Figure 5, the most important classification features are proton density, differ-
ential proton flux in the range of 310–580 keV, and ion temperature.
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Figure 5. The most important classification features ((a) proton density, (b) differential proton flux in
the range of 310–580 keV, and (c) ion temperature) in the forecasting of precipitation model for 7, 8,
and 9 days in advance.

To improve the predictability of the proposed decision tree ML model, we have used
the ensemble classification methods by combining multiple ML classification models,
specifically random forest and K-nearest neighbors, and testing these models by using
the ensembles of models based on boosting (AdaBoost classifier and gradient boosting
classifier) and bagging (bagging classifier). For that purpose, we combined all the data into
one data set:

DS = ∪20
r=1DSr (10)

We prepared another tree-based algorithm (random forest). We built the model with
10 decision trees and 100 decision trees, but the results were the same. We determined the
importance of the factors, as shown in Table 7.

Table 7. The most important factors in the random forest classification.

Lag Feature Name Feature Importance

t-4 Ion temperature 0.097
t-9 10.7 cm radio flux 0.097
t-5 38–53 0.093
t-2 Ion temperature 0.092
t-0 47–68 0.089
t-6 Ion temperature 0.087
t-3 38–53 0.087
t-7 47–68 0.087
t-8 47–68 0.086
t-1 Bulk speed 0.079

As can be seen from Table 7, the most important factors are ion temperature (t-4),
10.7 cm radio flux (t-9), and 38-53 (t-5). It is also obvious that different factors affect the
onset of precipitations with different time delays. It is also clear that an outbreak of a factor
such as ion temperature can lead to precipitation events with various time delays, or it may
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take a few flashes to cause precipitation. It should be noted from Table 8 that the accuracy
of this classifier on the test is 0.81 by using the bagging classifier SVC.

Table 8. Recall accuracy of forecast models for the cross-validation test.

Classifier Forecast
0

Forecast
1

Forecast
2

Forecast
3

Forecast
4

Forecast
5

Forecast
6

Forecast
7

Forecast
8

Forecast
9

DecisionTree 0.75 0.73 0.71 0.72 0.73 0.77 0.73 0.78 0.70 0.70
RandomForest 0.70 0.73 0.59 0.73 0.70 0.78 0.70 0.70 0.69 0.65

KNearestNeighbors 0.63 0.72 0.61 0.74 0.63 0.70 0.70 0.62 0.71 0.71
AdaBoost 0.73 0.71 0.73 0.71 0.70 0.74 0.69 0.78 0.71 0.70

GradientBoosting 0.73 0.73 0.73 0.71 0.60 0.74 0.71 0.76 0.72 0.69
BaggingClassifierSVC 0.80 0.77 0.74 0.76 0.74 0.81 0.74 0.78 0.71 0.70

As can be seen from Table 8, the accuracy of the ensemble models, as well as the
decision tree model is smaller when we use the combined data. One of the reasons can be
the joining of data sets and different variances of the target data. That is, such an ensemble
of models can be used to forecast floods up to 9 days in advance, but the model accuracy
will be much smaller than when we use the independent data sets.

3.5. Discussion

Several authors have presented a possible theoretical (physical) explanation of the mech-
anism that could explain the interaction considered in this paper. Stevančević et al. [72,73]
explained that high-energy particles from the Sun directly influence atmospheric processes
by capturing air masses with hydrodynamic pressure. If the point of contact becomes satu-
rated with moisture, clouds and precipitation can form. The mechanism of precipitation
formation is explained by the principle of electron valence. According to [72,73], electro-
magnetic characteristics of solar wind, the location of the Sun from which it is emitted,
and its chemical structure determine cloud formation and the appearance of precipitation,
and the occurrence of heatwaves and dry periods. The abovementioned mechanism is
explained by the circulation of vectors of interplanetary magnetic fields. Prikryl et al. [34]
discussed two flash floods in Slovakia that followed the arrival of two high-speed solar
wind streams from coronal holes and indicated that “vertical coupling in the atmosphere
exerts downward control from the solar wind to the lower atmospheric levels influencing
tropospheric weather development”. Prikryl et al. [28] indicated that heavy precipitation
events leading to floods and flash floods in Japan, Australia, and the continental U.S. tend to
follow the arrivals of high-speed solar wind streams from coronal holes. They hypothesize
that the formation of a series of convective cells that cause heavy rainfall and flooding
may be triggered by downwelling atmospheric gravity waves (AGWs). When descending
AGWs are over-reflected in the warm frontal zone of extratropical cyclones, even the small
additional lift they would provide to a moist air parcel already rising above the cold air
ahead can initiate oblique convection, thus forming a band of precipitation. Hagiwara
and Tanaka [74] showed that the waves can propagate downward into the troposphere as
damping gravity waves and found that “wave propagation and surface reflections create
a geopotential antinode at the bottom of the atmosphere that corresponds to the vertical
width of the initial shock state”. They suggested that standing waves in temperature
create a knot on the ground surface that changes the stability of the atmosphere and may
affect cyclone development. According to [28], major floods in southeastern Australia [75]
also appear to show a tendency to occur after the arrival of the high-speed stream from
coronal holes.

Other mechanisms influencing cloud formation and precipitation have also been
investigated. Dickinson [76] pointed out the processes by which the ionization effects of
galactic cosmic rays influence the formation of sulfate aerosol and cloud nucleation near the
tropopause. Harrison and Stephenson [77] used 50 years of data from the UK and found
that days with high cosmic rays were more likely to be cloudy and coincided. Moreover,



Mathematics 2023, 11, 795 16 of 20

the influence of the coronal mass ejection effect on cosmic rays, and consequently on cloud
formation was studied in several works [78–80].

The statistical results presented in this study confirm the findings of previously pub-
lished studies that precipitation-induced floods are usually accompanied by the arrival
of sudden flows of charged particles from the Sun. The research showed that the applied
model is accurate and adequate for predicting the occurrence of precipitation-induced
floods 9 days in advance, after the outbreak of charged particles from the Sun. The model
shows that in 91% of cases, the outbreak of charged particles influenced the occurrence of
precipitation that can cause floods. Due to the nature of the data from the ACE satellite
which, after passing through the ordered energy region through the geo-efficient position,
no longer detects the flow of high-energy particles, as well as the fact that the interplanetary
magnetic field moves in the form of curved lines, we believe that the continuation of the
research should aim processing data on the parameters of the solar wind aimed at our
planet, which can be measured by other satellites. Additionally, although it is not included
in this research, we believe that the continuation of the research should also include the
influence of cosmic rays on the occurrence of precipitation caused by floods.

4. Conclusions

The understanding of the complex and dynamic processes between the Sun and the
Earth is not complete, so their prediction is also difficult. However, accurate forecasting and
early warning systems are urgently needed in today’s society. The large amounts of satellite
data that monitor the processes between the Earth and the Sun and the development of
new ML techniques that can learn from the data present a chance to discover patterns
that are not visible using traditional methods. Even though the connection between solar
activity and climate parameters is not widely accepted and there are numerous hypotheses
to interpret possible physical mechanisms, the establishment of an appropriate hidden
dependence relationship between solar activity and environmental processes, such as
precipitation-induced flooding, is a contribution to this field of research. It has been shown
that occurrence of the flood in the investigated river basins are highly sensitive to the
sudden increase in precipitation amount. Although flood occurrence is a complex issue
depending on many factors, the amount of precipitation on the day or the day before
plays a major role in a flood occurrence. Using a decision tree modeling approach to ML
classification, we have shown that precipitation-induced floods in the UK tend to follow
the arrival of high-speed solar wind streams. The results showed that the occurrence
of precipitation-induced floods can be expected up to several days after the appearance
of sudden flows of charged particles from the Sun. The response to changes in solar
emissivity is expected to have a time lag, but there is no consensus on this in the recent
literature. The research in this paper has shown that the decision tree model is accurate and
adequate and could be used to predict the appearance of precipitation-induced floods up
to 9 days ahead. According to the presented results, the decision tree models can explain
the occurrence of precipitation-induced floods or their absence in 91% of cases. Proton
density, differential proton flux in the 310–580 keV range, and ion temperature were found
to be the most important factors for precipitation-induced flood forecasting. On the other
hand, the random forest model can define the most important factors of solar activity for
the precipitations and flood events. In addition, it has been shown that the independent
datasets can provide the models with higher accuracy than the joined data. Our research
shows that with increasing technical capabilities, and the use of improved ML techniques
and large data sets, the knowledge about observed processes can be expanded. The results
of this study confirm that a better understanding of the physical link between solar wind
and tropospheric weather is very important because it can help predict severe weather
(which is still in its early stages) and enable further assessment of the risk of severe weather.
We can assume that the results obtained in this study can be connected with the nature
of the data used, so we consider that the continuation of the research should be directed
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toward (i) obtaining and processing data measured by other satellites, (ii) including the
influence of cosmic rays, and (iii) expanding the research to other geographical regions.
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