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Abstract: We propose an improved variant of the accelerated gradient optimization models for solving
unconstrained minimization problems. Merging the positive features of either double direction, as
well as double step size accelerated gradient models, we define an iterative method of a simpler form
which is generally more effective. Performed convergence analysis shows that the defined iterative
method is at least linearly convergent for uniformly convex and strictly convex functions. Numerical
test results confirm the efficiency of the developed model regarding the CPU time, the number of
iterations and the number of function evaluations metrics.
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1. Accelerated Double Direction and Double Step Size Methods Overview

In order to define an efficient optimization model for solving unconstrained nonlinear
tasks, we approach the matter on multiple fronts. One of the primers is insuring a fast
convergence, desirably close enough to the Newton method’s convergence rate. On the
other hand, we would like to avoid eventual complicated calculations that can arise from
deriving Hessians’ second order partial derivatives. That is why the quasi-Newton method
is a good starting point in developing an optimization method with good performance
profiles. The benefits of the quasi-Newton methods are well known. One of the main
characteristics of these iterations is the conservation of good convergence features, although
the Hessian, i.e., the Hessian’s inverse, is not explicitly used. Instead, the appropriately
defined Hessian’s approximation, or the approximation of its inverse is used in these
methods. This way, the quasi-Newton methods preserve a good convergence rate and,
at same time, avoid the possible difficulties of Hessians’ calculations. In this paper, we
are using a quasi-Newton concept to define an efficient minimization scheme for solving
unconstrained minimization problems, assigned as:

min f (x), x ∈ Rn, (1)

where f (x) is an objective function.
When defining an optimization iterative models based on the quasi-Newton form, we

can start with the following general iteration:

xk+1 = xk + tkdk, (2)
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where xk stands for a current iterative point, xk+1 is the next one, tk is the iterative step
length and dk is the search direction of the k−th iteration. For iterations of the quasi-Newton
type, the search direction is defined trough the gradient features. Therewith, an iterative
direction vector has to fulfill the descent condition, i.e.,

gT
k dk ≤ 0. (3)

In condition (3), by gk, we denote the gradient of the objective function at xk. Furthermore,
we adopt the usual notations:

g(x) = 5 f (x), G(x) = 52 f (x), gk = 5 f (xk), Gk = 52 f (xk), (4)

where5 f (x) and52 f (x) are the standard notations for the gradient and the Hessian of
the goal function, respectively.

The way of defining the iterative step length tk and the iterative search direction vector
dk directly influences the methods’ efficiency. With that, some authors [1–5] segregated
one parameter more, equally important as the other two, that contributes to the method’s
performance characteristics. That is an iterative accelerated parameter, often marked out
as γk. In [1], the author marked this parameter as θk, and its iterative value is expressed
by the relation (5). Researchers on this topic justifiably extricated a class of accelerated
gradient schemes. In [3], for example, authors numerically confirmed more than evident
performance progress in favor of the accelerated method when compared to its non-
accelerated version. Here are some expressions of the accelerated factors defined in the
accelerated gradient models mentioned above. These accelerated parameters are also listed
in [6]:

θAGD
k = −

tkgT
k gk

tkyT
k gk

, (5)

γSM
k+1 = 2γk

γk[ f (xk+1)− f (xk)] + tk‖gk‖2

t2
k‖gk‖2

, (6)

γADD
k+1 = 2

f (xk+1)− f (xk)− αkgT
k

(
αkdk − γ−1

k gk

)
(

αkdk − γ−1
k gk

)T(
tkdk − γ−1

k gk

) , (7)

γADSS
k+1 = 2

f (xk+1)− f (xk) +
(
αkγk

−1 + βk
)
‖gk‖2

(αkγk
−1 + βk)

2‖gk‖2
, (8)

γTADSS
k+1 = 2

f (xk+1)− f (xk) + ψk‖gk‖2

ψ2
k‖gk‖2

, ψk = [αkγ−1
k − α2

k) + 1]. (9)

Interesting ideas of the double step length and the double direction approach in
defining an efficient minimization iteration are presented in [2,3]. In both of these studies,
the authors used properly determined accelerating characteristics. In this paper, we use the
proven good properties of each of these models, i.e., of the accelerated double direction, or
shortly, the ADD method, as well as of the accelerated double step size-ADSS method.

The ADD iteration is defined by the following expression:

xk+1 = xk + α2
kdk − αkγk

−1gk, (10)

where γk = γADD
k > 0 is the acceleration parameter. The iterative step length αk is derived

using the Armijos’ Backtracking inexact lines search algorithm. Variable dk stands for the
second vector direction, and it is calculated by the next rule:

dk(t) =
{

d∗k , k ≤ m− 1
∑m

i=2 ti−1d∗k−i+1, k ≥ m
(11)
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where d∗k is the solution of the problem minx∈R Φk(d),

Φk(d) = 5 f (xk)
Td +

1
2

γk+1 I = g(xk)
Td +

1
2

γk+1 I.

The two search directions in the ADD method are dk, defined by the previous rule and
−γ−1

k gk. One of the main results in [3] is that the ADD algorithm provides a lower number
of iterations than the accelerated gradient descent method, marked as the SM method,
which is presented in [2]. The iterative form of the SM method is given by the expression:

xk+1 = xk − tkγ−1
k gk,

where tk is the iterative step length value, and γk ≡ γSM
k is the acceleration parameter of

the SM iteration expressed by the relation (6).
The accelerated double step size model, i.e., the ADSS, is defined as

xk+1 = xk − αkγk
−1gk − βkgk = xk −

(
αkγ−1

k + βk

)
gk. (12)

Parameters αk > 0 and βk > 0 are two iterative step lengths, calculated by two different
Backtracking procedures, and γk = γADSS

k > 0 is the ADSS iterative accelerated parameter.
In the ADSS iteration, we can identify the vector direction as:

−
(

αkγ−1
k + βk

)
gk. (13)

Transformed ADSS method, or in short, the TADSS, came from the ADSS scheme under
the following condition: αk + βk = 1. The TADSS iteration is defined as:

xk+1 = xk − [αk(γk
−1 − 1) + 1]gk. (14)

From expression (13), we conclude that the defined vector direction has the form of a
negative gradient direction. Having that in mind, it depends on the step length parameters
as well as on the accelerated parameter iterative value. Numerical experiments from [4]
show that the ADSS iteration outperforms the ADD [3] and the SM [2] schemes regarding
all three of the analyzed metrics: the number of iterations, CPU time and the number of
function evaluations.

We are motivated to define the method as an improved merged version of the acceler-
ated double direction and double step size methods. At the same time, the proposed model
should be of the simpler form than the ADD and the ADSS schemes are. We define this
simpler form by ejecting one of the Backtracking algorithms from the ADSS iteration and
by replacing the algorithm (11) in the ADD scheme with the gradient descent rule. Taking
all these assumptions, we expect the proposed iterative method to be convergent at least
at the same rate as the ADD and the ADSS methods are. That modified iteration, based
on the mentioned accelerated gradient descent algorithms, should conserve the positive
sides of its predecessors but also exceed them regarding the performance profiles of all
tested metrics.

The paper is organized in the following way: In Section 2, we define the improved
version of the ADD and the ADSS schemes. The convergence analysis of the defined model
is carried out in Section 3. Numerical test results are compared, analyzed and displayed in
Section 4.

2. Modified Accelerated Double Direction and Double Step Size Method

Taking into account the iterative form of the accelerated ADD method as well as good
performance features of the accelerated double step size ADSS scheme, considering all
three tested metrics, we propose the following iterative model for solving a large scale of
unconstrained minimization problems:
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xk+1 = xk −
(

αkγk
−1 + α2

k

)
gk ≡ xk − αkγk

−1gk − α2
k gk. (15)

Iterative scheme (15) presents the merged variant of the ADD and the ADSS methods,
keeping the favorable aspects of each included gradient scheme. We denoted the iterative
rule (15) as the modified accelerated double direction and double step size method, or in short,
modADS. In the modADS scheme, one iterative search direction is γk

−1gk, and the other is
simply a negative gradient direction. Two step lengths, αk and α2

k , are obtained using one
Backtracking procedure. Basically, our main goal in generating the modADS method is to
define an improved merged version of the accelerated double direction and double step
size methods. Having that in mind, we want to conserve the positive aspects of each of
these two baseline models. The form of the ADD iteration contains only one iterative step
length value, i.e., one Backtracking procedure is applied. That was the main motivation to
substitute the second iterative value βk from the ADSS iteration with the α2

k . In this way,
we conserve the form of the ADD iteration in the new modADS scheme.

On the other hand, from the results presented in [4], we know that the second search
direction dk defined in the ADD iteration by (11) causes an increase in the number of
function evaluations. Therefore, instead of it, just like in the ADSS iteration, in the new
modADS process we simply use the gradient descent direction for the second search
direction, as well.

There are certainly many different options for defining the second iterative step length
in the double-direction and double step size models that differ from our choice: α2

k .
That question is still open. Since the modADS belongs to the class of accelerated double
direction and double step size methods and presents a merged form of the ADD and
the ADSS iteration, the choice to keep α2

k as the second step length value was a natural
one. Additionally, according to the TADSS iteration (14), it could be said that the TADSS
corresponds to a different choice of second step size βk of the ADSS iteration. Therefore,
this is also a motivation to define the modADS in a presented way and to compare the
performance features of these two similar approaches.

So, the common elements of the ADD, the ADSS and the proposed modADSS iterative
form represent the iterative step length value, αk, and the search direction vector γk

−1gk.
The other search direction in the modADS is −gk, just like in the ADSS scheme. Still,
as previously explained, the second step-size value of the new method differs from the
one, βk, applied in the ADSS model. Instead of using an additional inexact line search
technique to calculate the second iterative step length value, in the modADS, we use only
one Backtracking procedure and define the second step length parameter as the quadratic
value of the Backtracking outcome αk. This way, we evidently provide a decrease in the
computational time, number of needed iterations and function evaluations. We confirm
this statement in Section 4 by comparative analysis of the performance profiles of each of
the tested models.

The algorithm of the Backtracking procedure upon which we calculate the iterative
step length value is given by the following steps:

1. Objective function f (x), the direction dk of the search at the point xk and numbers
0 < σ < 0.5 and β ∈ (0, 1) are required;

2. α = 1;
3. f (xk + αdk) > f (xk) + σαgT

k dk, take α := αβ;
4. Return αk = α.

We now derive the iterative value of the acceleration parameter using the second order
Taylors’ expansion of the modADS iteration (15). To avoid huge expressions in that process,
we simplified the relation (15) using the next substitution:

xk+1 = xk − skgk, (16)
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where sk = αkγk
−1 + α2

k = αk
(
γk
−1 + αk

)
. Second order Taylor polynomial of (16) is then:

f (xk+1) ≈ f (xk)− gT
k skgk +

1
2

skgT
k∇

2 f (ξ)gk. (17)

In relation (17), ∇2 f (ξ) stands for the Hessian of the objective function, and variable ξ
fulfills the following conditions:

ξ ∈ [xk, xk+1], ξ = xk + δ(xk+1 − xk) = xk − δskgk, 0 ≤ δ ≤ 1.

We replace Hessian ∇2 f (ξ) with a properly defined scalar diagonal matrix

γk I,

where variable γk+1 is the acceleration parameter we are searching for:

f (xk+1) ≈ f (xk)− sk‖gk‖2 +
1
2

skγk+1‖gk‖2. (18)

From the previous expression, we can easily compute the iterative value of the acceleration
factor:

γk+1 = 2
f (xk+1)− f (xk) + sk‖gk‖2

s2
k‖gk‖2

= 2
f (xk+1)− f (xk) + αk

(
γ−1

k + αk

)
‖gk‖2

α2
k

(
γ−1

k + αk

)2
‖gk‖2

. (19)

We are only interested in the positive γk+1 values because, in that case, both of the
second order necessary and the second order sufficient conditions are fulfilled. However, if
in some iterative steps we calculate a negative value for the acceleration parameter, then
we simply set γk+1 = 1. This choice of γk+1 transforms our modADS iteration into the
standard gradient descent iterative method, i.e.,

xk+2 = xk+1 − αk+1(1 + αk+1)gk+1 ≡ xk+1 − tk+1gk+1,

for some tk+1 = αk+1(1 + αk+1).
For initial values 0 < ρ < 1, 0 < τ < 1, x0, γ0 = 1, we now present the modADS

algorithm:

1. Set k = 0, compute f (x0), g0 and take γ0 = 1;
2. If ‖gk‖ < ε, then go to Step 8, else continue by the step 3;
3. Apply Backtracking algorithm to calculate the iterative step length αk;
4. Compute xk+1 using (15);
5. Determine the acceleration parameter γk+1 using (19);
6. If γk+1 < 0, then take γk+1 = 1;
7. Set k := k + 1, go to Step 2;
8. Return xk+1 and f (xk+1).

3. Convergence Analysis

In this section, we prove that the modADS iteration linearly converges on the sets of
uniformly convex functions and strictly convex quadratic functions. We analyze these two
function sets separately.

3.1. Set of Uniformly Convex Functions

To prove the linear convergence properties, we are using the following two statements
from [7,8]:

Proposition 1. If the function f : Rn → R is twice continuously differentiable and uniformly
convex on Rn then:
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(1) the function f has a lower bound on L0 = {x ∈ Rn | f (x) ≤ f (x0)}, where x0 ∈ Rn is
available;

(2) the gradient g is the Lipschitz continuous in an open convex set B which contains L0, i.e.,
there exists L > 0 such that:

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ B.

Lemma 1. Under the assumptions of Proposition 1, there exist real numbers m and M satisfying:

0 < m ≤ 1 ≤ M, (20)

such that f (x) has an unique minimizer x∗ and

m‖y‖2 ≤ yT∇2 f (x)y ≤ M‖y‖2, ∀ x, y ∈ Rn; (21)
1
2

m‖x− x∗‖2 ≤ f (x)− f (x∗) ≤ 1
2

M‖x− x∗‖2, ∀ x ∈ Rn; (22)

m‖x− y‖2 ≤ (g(x)− g(y))T(x− y) ≤ M‖x− y‖2, ∀ x, y ∈ Rn. (23)

In the following Lemma, we show that the objective function, on which the modADS
iteration is applied, is bounded below. We also estimate the measure of the iterative function
decreasing. The proof is analogous as in [2].

Lemma 2. Let the sequence {xk} be defined by the (15), and let f be uniformly convex function.
Then:

f (xk)− f (xk+1) ≥ µ‖gk‖2, (24)

for

µ = min
{

σ

M
,

σ(1− σ)

L
β

}
, (25)

where L > 0 is the Lipschitz constant from Proposition 1, and M ∈ R is defined in Lemma 1.

The fact that the modADS model converges at least linearly is proved in the next
Theorem 1.

Theorem 1. The sequence {xk}, defined by the (15) and applied on uniformly convex and twice
differentiable objective function f , converges linearly to its solution x∗ and

lim
k→∞
‖gk‖ = 0. (26)

Proof. From Lemma 2, we know that the objective function f , when applied on the
modADS process, is bounded below and decreases, so it is evident that:

lim
k→∞

( f (xk)− f (xk+1)) = 0. (27)

This equality, merged with the result of Lemma 2, i.e., the relation (24), lead us to the
following conclusion:

lim
k→∞
‖gk‖ = 0. (28)

Let us prove now that the sequence {xk}, generated by the (15), converges to its solution
x∗, i.e.,

lim
k→∞
‖xk − x∗‖ = 0. (29)

To prove (29), we put x∗ ≡ y in (23):

m‖x− x∗‖2 ≤ (g(x)− g(x∗))T(x− x∗) ≤ M‖x− x∗‖2.
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Regarding the Mean Value Theorem and the Cauchy–Schwartz inequality, further on
we obtain:

m‖x− x∗‖2 ≤ ‖g(x)‖ ≤ M‖x− x∗‖2. (30)

From (24) and (30), we have the following estimations:

µ‖gk‖2 ≥ µm2‖x− x∗‖2

≥ 2 · µ m2

M
( f (xk)− f (x∗))→k→∞ 0,

which confirms (29).
To complete this proof, at the end, we show that the modADS process is linearly

convergent. To do this, we practically need to prove that

ρ ≡
√

2 · µ m2

M
< 1.

We know from Lemma 2 that there are two values of the variable µ : µ = σ
M and

µ = σ(1−σ)β
L :

1. µ = σ
M : In this case, we have:

ρ2 = 2µ
m2

M
= 2 · σ

M
m2

M
= 2

σ

M
m2

M
≤ 2σ

m2

M
≤ 2σ < 1,

since σ ∈ (0, 1
2 ) and m < M.

2. µ = σ(1−σ)β
L : For this µ−value, using the inequality m ≤ L, we show the same

ρ2 = 2µ
m2

M
= 2 · βσ(1− σ)

L
m2

M
< 2 · 1

2
· 1 · m2

L ·M =
m2

L ·M ≤ L ·m
L ·M =

m
M

< 1,

which completes this proof.

3.2. Set of Strictly Convex Quadratics

Now, let us suppose that the objective function is a strictly convex quadratic function,
expressed as:

f (x) =
1
2

xT Ax− bTx, (31)

where A is a real n× n matrix, which is symmetric and positive definite, and b ∈ Rn is a
given vector. Lets denote and sort the eigenvalues of the matrix A as

λ1 ≤ λ2 ≤ · · · ≤ λn.

Our goal now is to prove the convergence of the modADS iteration when applied on
strictly convex quadratic. However, before we reveal the main theorem of this subsection,
we show one auxiliary lemma which estimates the iterative variable sk ≡ αk(γ

−1
k + αk)

with respect to the smallest and the largest eigenvalues of matrix A.

Lemma 3. The smallest and the largest eigenvalues of the matrix A satisfy inequalities:

σ

2λn
≤ αk+1(γ

−1
k+1 + αk+1) ≤

1
λ1

+ 1, (32)

where γk+1 and αk+1 are the iterative acceleration parameter and step length value of the modADS
iteration, respectively.
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Proof. For the strictly convex quadratic function (31), the difference of its values in two
successive points is:

f (xk+1)− f (xk) =
1
2

xT
k+1 Axk+1 − bTxk+1 −

1
2

xT
k Axk + bTxk

=
1
2
(xk − skgk)

T A(xk − skgk)− bT(xk − skgk)−
1
2

xT
k Axk + bTxk

=
1
2

xT
k Axk −

1
2

skxT
k Agk −

1
2

skgT
k Axk

+
1
2

s2
k gT

k Agk − bTxk + skbT gk −
1
2

xT
k Axk + bTxk

= −1
2

skxT
k Agk −

1
2

skgT
k Axk +

1
2

s2
k gT

k Agk + skbT gk,

i.e.,

f (xk+1)− f (xk) = −
1
2

skxT
k Agk −

1
2

skgT
k Axk +

1
2

s2
k gT

k Agk + skbT gk. (33)

Matrix A is symmetric and positive definite, so we can apply the symmetry condition:
bT gk = gTbk. We can also use the fact that the gradient of the function (31) is gk = Axk − b
and transform (33) into:

f (xk+1)− f (xk) = −
1
2

sk

(
gT

k Axk + xT
k Agk − skgT

k Agk − bT gk − bT gk

)
= −1

2
sk

(
gT

k (Axk − bT) + gT
k (Axk − bT)− skgT

k Agk

)
= −1

2
sk

(
gT

k gk + gT
k gk − skgT

k Agk

)
= −skgT

k gk +
1
2

s2
k gT

k Agk.

If we replace the derived expression of the difference between function values in two
successive iterations into the (19), we obtain:

γk+1 = 2
−skgT

k gk +
1
2 s2

k gT
k Agk + skgT

k gk

s2
k gT

k gk
≡

gT
k Agk

gT
k gk

. (34)

From (34), we conclude that γk+1 is the Rayleigh quotient of the real symmetric matrix at
the gradient vector gk, so the next is true:

λ1 ≤ γk+1 ≤ λn, k ∈ N. (35)

Since 0 ≤ αk+1 ≤ 1, the following estimations are valid:

sk+1 = αk+1(γ
−1
k+1 + αk+1) = αk+1γ−1

k+1 + α2
k+1

≤ 1
γk+1

+ αk+1 ≤
1

λ1
+ αk+1 ≤

1
λ1

+ 1

To prove the right side of (32), we will take the relation tk > η(1−σ)γk
L , proved in [2].

With proper notation used in this scheme, the previous inequality becomes:

αk >
β(1− σ)γk

L
. (36)
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We take into account the parameter limitations, i.e., σ ∈ (0, 1
2 ), β ∈ (σ, 1) and 0 ≤ αk+1 ≤ 1,

and that leads us to:

sk+1 = αk+1(γ
−1
k+1 + αk+1) = αk+1γ−1

k+1 + α2
k+1

>
αk+1
γk+1

≥ β(1− σ)γk+1
L

· 1
γk+1

≥ β(1− σ)

L
≥

σ
(

1− 1
2

)
L

=
σ

2L
≥ σ

2λn
.

The last inequality arises from the fact that the largest eigenvalue λn has the property of
the Lipschity constant L:

‖g(x)− g(y)‖ = ‖Ax− Ay‖ = ‖A(x− y)‖ ≤ ‖A‖‖x− y‖ = λn‖x− y‖.

This analysis confirms that (32) is truly assured.

Theorem 2. Suppose the relation λn < 2 2λ1
1+λ1

holds for the smallest and the largest eigenvalues of
the strictly convex quadratic function (31). Then, considering the modADS iteration applied on
(31), the following holds:

gk =
n

∑
i=1

dk
i vi, (37)

where

(dk+1
i )

2 ≤ δ2(dk
i )

2
, δ = max

{
1− λ1

2λn
, λn(

1
λ1

+ 1)− 1
}

, (38)

for some real parameters dk
1, dk

2, . . . , dk
n. With that:

lim
k→∞
‖gk‖ = 0. (39)

Proof. Let {v1, v2, . . . , vn} be the set of orthonormal eigenvalues of matrix A in expression
(31). Assume that the sequence {xk} is generated by iterative rule (15). Then, the gradient
of the function (31) in k + 1−th iterative point is:

gk+1 = A(xk − skgk)− b = Axk − b− sk Agk = gk − sk Agk = (I − sk A)gk, (40)

since gk = Axk − b. Applying (37), we obtain:

gk+1 =
n

∑
i=1

dk+1
i vi =

n

∑
i=1

(1− skλi)dk
i vi.

To prove (37), it is enough to show that | 1− skλi |≤ δ.

| 1− skλi |≤ δ⇔ { 1− skλi skλi ≤ 1
skλi − 1 skλi > 1,

(41)

so, we analyze two cases:

1. 1 ≥ skλi ≥ λ1
2λn
⇒ 1− skλi ≤ 1− λ1

2λn
≤ δ;

2. 1 < skλi ≤ λn

(
1

λ1
+ 1
)
⇒ λn

(
1

λ1
+ 1
)
− 1 < δ.

From (37), we have that the measure of the gradient norm square is:

‖gk‖2 =
n

∑
i=1

(dk
i )

2, (42)
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and since parameter δ ∈ (0, 1), we derive the final conclusion (39).

4. Numerical Outcomes and Comparative Analysis

In this section, we display the numerical results, using which we compare the relevant
methods. For comparative models, in addition to the objective modADSS method presented
in this paper, we primarily chose the accelerated double direction (ADD) method introduced
in [3] and the accelerated double step-size (ADSS) iteration from [4]. This is a natural choice
of comparative optimization processes since the derived modADS algorithm originates
from these two gradient accelerated schemes and our basic goal is the improvement of
this class of methods. Then, we investigate the impact of Backtracking parameter β by
testing two more values for this parameter. The TADSS method, presented in [5], and
the modADS introduced in this paper present two different ways of reducing the double
step-size ADSS scheme into a single step length iteration. Due to this fact, we compare
these two methods as well. Finally, we complete the numerical comparative analysis by
comparing the defined modADS model with two more general gradient descent methods:
Cauchy’s gradient method (GD) and Andrei’s accelerated gradient method (AGD) from [1].

The ADD scheme brought benefits regarding the reduction in the needed number of
iterations towards its non-linear version and the SM method from [2]. Furthermore, in [4],
the ADSS shown undisputed advances with respect to all three of the tested metrics: the
number of iterations, the CPU time and the number of function evaluations. It has been
compared with the SM and the ADD schemes.

All codes are written in the visual C++ programming language and run on a Worksta-
tion Intel(R) Core(TM) 2.3 GHz. The following values of the Backtracking parameters are
taken: σ = 0.0001 and β = 0.8.

The stopping criteria are:

‖gk‖ ≤ 10−6 and
| f (xk+1)− f (xk)|

1 + | f (xk)|
≤ 10−16.

We chose 10 values for the number of parameters for each test function: 100; 500; 1000;
3000; 5000; 10,000; 15,000; 20,000; 25,000 and 30,000. As a final result for 1 test function, we
sum all 10 outcomes. We measured all three performance characteristics: the number of
iterations, CPU and the number of evaluations. If for a certain number of iterations and for
some test functions the applied model does not finish the test process in some defined time,
we put the constant te, the time-limiter parameter, in Tables 1 and 2.

Table 1. Number of iterations, modADS, ADD and ADSS.

Function Number modADS ADD ADSS

1. 50 73 50
2. 432 82 432
3. 31 88 31
4. 60 83 135
5. 41 82 44
6. 80 110 76
7. 70 120 70
8. 40 100 40
9. 783 100 781
10. 70 100 70
11. 428 91 428
12. 470 84 470
13. 60 91 60
14. 61 81 61
15. 60 85 60
16. 40 100 40
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Table 1. Cont.

Function Number modADS ADD ADSS

17. 80 111 80
18. 60 89 60
19. 432 82 432
20. 70 100 70
21. 10 10 10
22. 76 102 70
23. 2202 te > l 2203
24. 2215 te > l 2215
25. 32 80 34
26. 235 131 235
27. 10 10 10
28. 10 10 10
29. 3870 te > l 5083
30. 2061 te > l te > l

Table 2. Number of function evaluations, modADSS, ADD and ADSS.

Function Number modADS ADD ADSS

1. 1242 228,132 1703
2. 1240 154,355 1793
3. 837 131,637 4804
4. 3484 140,862 16,997
5. 5384 127,188 876
6. 410 176,018 690
7. 250 186,657 420
8. 220 104,690 350
9. 1756 223,240 2593
10. 320 206,110 480
11. 1245 249,238 1797
12. 1283 159,256 1861
13. 570 254,480 824
14. 573 154,821 827
15. 582 189,159 809
16. 350 278,890 490
17. 300 71,354 420
18. 602 254,487 854
19. 1239 154,050 1792
20. 300 130,390 460
21. 30 40 40
22. 7023 123,052 617
23. 4424 > te 6639
24. 4480 > te 6715
25. 457 143,701 714
26. 1218 251,955 1692
27. 30 40 40
28. 30 40 40
29. 7760 > te 15,279
30. 126,094 > te > te

Remark 1. Time-limiter parameter is introduced in [3]. It is posed as an indicator for stopping the
code execution, after some defined time, te ≈ 120 s.

In the next Listing 1, we list the set of test functions examined in this research. We
applied all three compared methods to each of these functions. The proposed functions are
taken from a collection of unconstrained optimization test functions introduced in [9].



Mathematics 2022, 10, 259 12 of 18

Listing 1. Test functions.

1. Extended Penalty
2. Perturbed Quadratic
3. Raydan-1
4. Diagonal 1
5. Diagonal 3
6. Generalized Tridiagonal-1
7. Extended Tridiagonal-1
8. Extended Three Expon. Terms
9. Diagonal 4
10. Extended Himmelblau
11. Quadr. Diag. Perturbed
12. Quadratic QF1
13. Exten. Quadr. Penalty QP1
14. Exten. Quadr. Penalty QP2
15. Quadratic QF2
16. Extended EP1
17. Extended Tridiagonal-2
18. Arwhead
19. Almost Perturbed Quadratic
20. Engval1
21. Quartc
22. Generalized Quartic
23. Diagonal 7
24. Diagonal 8
25. Diagonal 9
26. DIXON3DQ
27. NONSCOMP
28. HIMMELH
29. Power (Cute)
30. Sine

In Table 1, we display the results concerning the number of iterations metric. All three
of the models provide very good numerical outcomes regarding the number of needed
iterations. As expected, modADS and ADSS have an equal number of iterations for many
test functions, precisely, 21 out of 30. This is due to the modADS iterative form having
similar characteristics to those of the ADSS iteration. All three models give the same
number of iterations for three cases. With that, each of the modADS and ADD give the
lowest number of iterations in 6 out of 30 cases while ADSS does so in only 1 of 30 cases. A
general view shows that modADS gives the final outcomes for all 30 test functions, ADD
for 26 and ADSS for 29. ADD broke the time-limiter constant for the Diagonal 7, Diagonal 8,
Power (Cute) and Sine functions. Execution time is exceeded only for the Sine function
when the ADSS model is applied.

Regarding the speed of execution of each comparative model, from the obtained
numerical outcomes, we can see that the modADS and ADSS models perform almost
equally, and that is why we did not display the results obtained on this metric. Both models
give zeros for CPU time in 29 out of 30 cases, and only modADS was successfully applied
on the test function (Sine), while the ADSS iteration broke the execution time in this case.
The ADD model has the worst outcomes in testing this characteristic with four te breaks.

The contents of the Table 2 show the number of function evaluations for all three
of the tested models. It is obvious that the modADS achieved the greatest improvement
regarding this performance characteristic, when compared to the other two test processes.
This method convincingly gives the lowest number of function evaluations in 29 out of
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30 cases. The ADSS has the best outcome in 1 case only, while the ADD has very high
numbers as results regarding this metric for almost all 30 test functions.

The average values concerning the three analyzed criteria for all comparative models
are displayed in Table 3. We included the results of these computations achieved on 26 out
of 30 test functions, on which we could apply all methods without breaking the execution
time. From this Table, we can obtain a general impression about the performance features
of the generated modADS process in comparison to its forerunners. We see that this new
accelerated variant is equally fast as the ADSS scheme, it slightly goes beyond the ADSS
regarding the number of iterations metric and evidently gives a significant shift in the
number of evaluations. When compared with the ADD iteration, the modADS iteration
upgrades it multiple times regarding all three performance profiles. More precisely, the
modADS gives a 4 times lower average number of iterations, more than a 142 times lower
number of function evaluations and it is multiple times faster than the ADD process.

Table 3. ModADS, ADD and ADSS average outcomes of all 3 analyzed metrics obtained on 26 test
functions from Listing 1.

Average Metrics modADS ADD ADSS

Number of iterations 145.81 583.23 148.42
CPU time (s) 0 135.85 0

Number of function evaluations 1191.35 157,455.46 1691.65

We now analyze the dependency of the approaches regarding the Backtracking pa-
rameter beta. As mentioned before in this Section, in all previously displayed results, in the
algorithms of all three comparative models, the value of this parameter was set to β = 0.8.
We conducted 600 additional tests over the modADS, the ADD and the AGD algorithms
for 2 more values of this parameter: β = 0.3 and β = 0.6. For that purpose, we chose
the first 10 test functions from the Listing 1. In the following Tables 4 and 5, we display
the sums of the obtained results regarding the number of iterations and the number of
evaluations for these three comparative models. As expected, the modADS demonstrates
similar performance regarding the analyzed metrics when compared to the ADD and the
ADSS methods, just as in the case of β = 0.8. Concerning the number of iterations, for
both beta values, the modADS acts similar to the ADSS method. Regarding the number of
evaluations, again for each of the 2 additional beta values, it gives the best results in 7 out of
10 cases when compared to the ADSS and in all 10 cases in comparison to the ADD scheme.

Table 4. Number of iterations for β = 0.3 and β = 0.6.

Function
Number modADS 0.3 ADD 0.3 ADSS 0.3 modADS 0.6 ADD 0.6 ADSS 0.6

1. 50 72 50 50 72 50
2. 432 81 432 432 82 432
3. 725 86 35 49 76 31
4. 33 78 76 40 83 102
5. 40 81 46 43 82 44
6. 83 100 78 80 110 76
7. 340 100 70 70 110 70
8. 40 100 40 40 100 40
9. 788 100 781 783 100 781

10. 70 90 70 70 100 70
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Table 5. Number of evaluations for β = 0.3 and β = 0.6.

Function
Number modADS 0.3 ADD 0.3 ADSS 0.3 modADS 0.6 ADD 0.6 ADSS 0.6

1. 342 165,094 778 620 184,537 1068
2. 945 117,659 1498 1037 128,657 1587
3. 4078 101,862 273 743 103,993 338
4. 195 96,897 944 665 121,558 13,181
5. 436 109,838 450 3642 116,573 594
6. 250 142,482 2137 296 148,475 532
7. 896 84,460 360 220 83,040 380
8. 220 116,101 220 280 90,350 270
9. 1626 182,688 2453 1656 189,410 2493

10. 210 126,380 400 250 183,600 266

Furthermore, we compare performance metrics between the modADS and the trans-
formed ADSS, i.e., the TADSS. In [5], the authors confirmed that the TADSS provides better
numerical outcomes regarding the number of iterations, CPU time and number of function
evaluations in comparison with the ADSS scheme on 22 chosen test functions. From the
results presented in the previous Tables 1–5, we concluded that the modADSS behaves
similarly to the ADSS regarding the number of iterations and the CPU time, but it provides
a lower number of evaluations. Due to results from [5], we may expect that the TADSS
has better performance results than the modADSS with respect to the number of iterations.
In Table 6, we present the achieved test results not only for the 22 test functions from [5]
but for all 30 test functions from Listing 1. With that, we show in Table 7 a more general
overview of the average results regarding all analyzed metrics.

Table 6. Number of iterations and number of function evaluations, modADS and TADSS.

Function Number modADS TADSS modADS TADSS
num.it. num.it. num.eval. num.eval.

1. 50 40 1242 1082
2. 432 10,973 1240 29,624
3. 31 1183 837 9355
4. 60 22 3484 349
5. 41 23 5384 439
6. 80 60 410 412
7. 70 60 250 250
8. 40 40 220 400
9. 783 40 1756 270
10. 70 60 320 300
11. 428 6915 1245 34,053
12. 470 5314 1283 14,650
13. 60 50 570 570
14. 61 86 573 672
15. 60 50 582 563
16. 40 167 350 776
17. 80 620 300 1993
18. 60 50 602 582
19. 432 10,715 1239 29,150
20. 70 60 300 290
21. 10 10 30 30
22. 76 60 7023 256
23. 2202 199 4424 572
24. 2215 174 4480 696
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Table 6. Cont.

Function Number modADS TADSS modADS TADSS
num.it. num.it. num.eval. num.eval.

25. 32 24 457 448
26. 235 10 1218 30
27. 10 10 30 30
28. 10 10 30 40
29. 3870 1752 7760 8644
30. 2061 te > l 126,094 te > l

Although the results from Table 6 illustrate that the TADSS provides a lower number
of iterations in even 17 out of 30 test functions, still the general average outcomes confirm
that the modADS provides more than 3 times better outcomes with respect to this metric
than the TADSS process. According to the Table 6 results, when we analyze the number
of function evaluations, the modADS and the TADSS obtain an equal number of the best
outcomes. Yet, from the results presented in Table 7, we are assured that the modADS is
almost three times more effective on this matter when compared to the TADSS iteration.
From Table 6, we can also notice that for the Sine function, the TADSS process exceeds the
execution time.

Table 7. ModADS and TADSS average outcomes of all 3 analyzed metrics obtained on 29 test
functions from Listing 1.

Average Metrics modADS TADSS

Number of iterations 416.48 1337.14
CPU time (s) 0.07 2.97

Number of function evaluations 47,639 136,506

To achieve more general view of the performance features of the modADS method,
we conducted additional comparisons with a classical gradient method, defined by Cauchy,
and with the accelerated gradient method from [1]. We further denote these comparative
methods by GD and AGD, respectively. The execution times were very long for the
previously chosen number of variables. Due to that reason, we changed this set into the set
of the next 10 decreased values: 10, 100, 200, 300, 500, 700, 800, 1000, 2000 and 3000. We
tested the first 15 test functions from the Listing 1 by applying the modADS, the GD and
the AGD iterative rules. The sums of 450 additional tests outcomes are displayed in the
following Tables 8–10.

From Table 8, we can see that it is undoubtedly evident that the modADS gives the
lowest number of iterations compared to the GD and the AGD methods in all 15 test
functions.

Table 8. The number of iterations for first 15 test functions obtained by modADS, GD and AGD
methods.

Function Number modADS GD AGD

1. 52 2058 271
2. 599 50,863 61,678
3. 44 20,823 15,344
4. 58 11,650 11,563
5. 59 19,178 29,673
6. 80 888 583
7. 70 678,648 1768
8. 40 1784 396
9. 788 8484 100
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Table 8. Cont.

Function Number modADS GD AGD

10. 70 1295 321
11. 595 354,364 549,164
12. 608 53,103 62,996
13. 61 579 182
14. 61 86,323 109,632
15. 61 63,745 11,797

The CPU execution time needed when 3 comparative models are applied on first 15 test
functions is listed in the Table 9. We see that, except in four cases when all three methods
have the same (zero) outcomes, the modADSS is again a dominant model regarding this
aspect, as well.

Table 9. CPU for first 15 test functions obtained by modADS, GD and AGD methods.

Function Number modADS GD AGD

1. 0 1 0
2. 0 116 150
3. 0 11 6
4. 0 7 8
5. 0 22 37
6. 0 0 0
7. 0 198 0
8. 0 0 0
9. 0 0 0
10. 0 0 0
11. 0 1414 3000
12. 0 1445 192
13. 0 0 0
14. 0 673 785
15. 0 767 20

The number of objective function evaluations achieved by the modADS, the GD and
the AGD are illustrated in the Table 10. General conclusions over this performance metric
are the same as regarding the number of iterations (Table 8), i.e., the modADS has the best
outcomes for all 15 test functions.

Table 10. The number of evaluations for first 15 test functions obtained by modADS, GD and AGD
methods.

Function Number modADS GD AGD

1. 929 42549 5822
2. 1469 1,747,145 1,971,495
3. 1260 416,274 240,666
4. 3137 355,313 316,838
5. 3126 577,545 838,896
6. 414 14,456 8321
7. 250 3457,777 7102
8. 220 17,968 3413
9. 1766 165,938 1110
10. 320 24,565 5591



Mathematics 2022, 10, 259 17 of 18

Table 10. Cont.

Function Number modADS GD AGD

11. 1472 11,880,543 16,276,884
12. 1466 1,656,738 1,823,829
13. 466 9679 2163
14. 467 2,489,732 2,719,409
15. 477 2,390,405 356,569

As a summary, we display in Table 11 the comparisons of the average results obtained
by three comparative methods (modADS, GD and AGD) regarding all three performance
characteristics. The results displayed in this table confirm that the modADSS requires an
approximately 417 times lower number of iterations compared to the GD method and an
about 263 times lower number of iterations compared to the AGD method. Regarding the
needed number of evaluations, the modADS outperforms the GD and the AGD methods
over the 1420 times.

Table 11. The average number of all 3 analyzed metrics obtained on first 15 test functions from Listing 1.

Average Metrics modADS GD AGD

Number of iterations 216.4 90,252.33 57,031.2
CPU time (s) 0 310.27 279.87

Number of function evaluations 1149.27 1,683,108.47 1,638,540.53

5. Discussion

We defined an optimization model for solving a large scale of unconstrained mini-
mization problems. This method belongs to the class of accelerated gradient iterations with
quasi-Newton features. The presented modADS method could be classified in this manner
since it contains the scalar matrix approximation of the Hessian, instead of the Hessian
itself, with a guiding scalar, the so-called approximation parameter. Previous research on
accelerated gradient optimization models confirms that the existence of this parameter
directly improves the performance profiles vice versa to the relevant non-accelerated ver-
sion [3]. In this paper, we chose to develop this acceleration parameter based on the second
order Taylor expansion of the posed iteration.

The modADS originates from the accelerated double direction and double step size
methods, and the so conducted convergence analysis is similar to those taken in [4]. It
confirmed that the developed model is linearly convergent on the sets of uniformly convex
and strictly convex functions.

The outcomes of the numerical experiments conducted on the modADS, the ADD and
the ADSS methods for three values of the Backtracking parameter β, show the convincing
improvement in reducing the number of function evaluations in favor of the developed
model. The ADSS method has one execution break, while the ADD has even four. The
modADS highly outperforms the ADD method regarding all analyzed metrics.

When compared with the Cauchy’s gradient method and the Andrei’s accelerated
gradient descent method from [1], the modADS outperforms these models multiple times
concerning all performance metrics.

6. Conclusions

The proposed iterative rule has the elements of the accelerated double step size-ADSS
method [4] and accelerated double direction-ADD method. [3]. In defining modADS, as in
previously mentioned methods, we kept the inexact line search Backtracking technique [10]
to define an iterative step length value.

We conducted the convergence analysis and proved that the proposed modADS process
is at least linearly convergent for the uniformly convex and strictly convex quadratic functions.
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Through numerical experiments, we generally conclude that, when compared with
the baseline methods, the modADS algorithms has more similarities with the ADSS scheme
than with the ADD method. With that, it upgrades both comparative models, primarily
because only the modADS method provides numerical outcomes for all 30 test functions,
without exception, which confirms the stability of the defined model. In comparison to the
classical gradient descent method and accelerated gradient descent method from [1], the
defined modADS shows a convincing progress regarding all monitored features.

From all exposed, we conclude that the proposed accelerated gradient minimization
model is an effective and efficient algorithm which can be applied for solving many
unconstrained optimization tasks.
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