Milošević, Dragan

Link to this page

Authority KeyName Variants
322eb10e-4464-43c2-82e9-05529ee24ec0
  • Milošević, Dragan (2)
Projects

Author's Bibliography

Thermal assessments at local and micro scales during hot summer days: a case study of Belgrade (Serbia)

Savić, Stevan; Milanović, Boško; Milošević, Dragan; Dunjić, Jelena; Pecelj, Milica; Lukić, Milica; Ostojić, Miloš; Fekete, Renata

(Budapest : Hungarian Meteorological Service, 2024)

TY  - JOUR
AU  - Savić, Stevan
AU  - Milanović, Boško
AU  - Milošević, Dragan
AU  - Dunjić, Jelena
AU  - Pecelj, Milica
AU  - Lukić, Milica
AU  - Ostojić, Miloš
AU  - Fekete, Renata
PY  - 2024
UR  - http://gery.gef.bg.ac.rs/handle/123456789/1749
AB  - Increasing thermal risk in cities is endangering the health and well-being of urban population and is driven by climate change and intensive urbanization. Therefore, if we plan to enlarge the capacities of cities to be more climate resilient in the 21st century, more detailed monitoring of urban climate on local and micro scales is needed. For this research we performed two microclimate measurement campaigns in urban area of Belgrade, during hot summer days in 2021. In total, five measurement sites were chosen in different urban designs and different local climate zones (LCZs). For thermal monitoring (air temperature – Ta and globe temperature – Tg) the Kestrel heat stress tracker sensor with 1-min measurement resolution was used, but we used 10-min average values. Obtained results showed distinct thermal differences (up to 7 °C on average) between densely built-up areas and green areas. Differences between built-up LCZs are lower with values from 2 to 4 °C. Important part of this research was microclimate monitoring on sites within the same LCZ (intra-LCZ variability). Results showed that shadows and short- and
longwave radiation play a paramount role in thermal variability. Direct and reflected radiations on one measurement site increased Ta up to 6 °C and Tg up to 12 °C when compared to other measurement site (in a similar urban design), which was in the shadow.
PB  - Budapest : Hungarian Meteorological Service
T2  - Időjárá
T1  - Thermal assessments at local and micro scales during hot summer days: a case study of Belgrade (Serbia)
VL  - 128
IS  - 1
SP  - 121
EP  - 141
DO  - 10.28974/idojaras.2024.1.7
ER  - 
@article{
author = "Savić, Stevan and Milanović, Boško and Milošević, Dragan and Dunjić, Jelena and Pecelj, Milica and Lukić, Milica and Ostojić, Miloš and Fekete, Renata",
year = "2024",
abstract = "Increasing thermal risk in cities is endangering the health and well-being of urban population and is driven by climate change and intensive urbanization. Therefore, if we plan to enlarge the capacities of cities to be more climate resilient in the 21st century, more detailed monitoring of urban climate on local and micro scales is needed. For this research we performed two microclimate measurement campaigns in urban area of Belgrade, during hot summer days in 2021. In total, five measurement sites were chosen in different urban designs and different local climate zones (LCZs). For thermal monitoring (air temperature – Ta and globe temperature – Tg) the Kestrel heat stress tracker sensor with 1-min measurement resolution was used, but we used 10-min average values. Obtained results showed distinct thermal differences (up to 7 °C on average) between densely built-up areas and green areas. Differences between built-up LCZs are lower with values from 2 to 4 °C. Important part of this research was microclimate monitoring on sites within the same LCZ (intra-LCZ variability). Results showed that shadows and short- and
longwave radiation play a paramount role in thermal variability. Direct and reflected radiations on one measurement site increased Ta up to 6 °C and Tg up to 12 °C when compared to other measurement site (in a similar urban design), which was in the shadow.",
publisher = "Budapest : Hungarian Meteorological Service",
journal = "Időjárá",
title = "Thermal assessments at local and micro scales during hot summer days: a case study of Belgrade (Serbia)",
volume = "128",
number = "1",
pages = "121-141",
doi = "10.28974/idojaras.2024.1.7"
}
Savić, S., Milanović, B., Milošević, D., Dunjić, J., Pecelj, M., Lukić, M., Ostojić, M.,& Fekete, R.. (2024). Thermal assessments at local and micro scales during hot summer days: a case study of Belgrade (Serbia). in Időjárá
Budapest : Hungarian Meteorological Service., 128(1), 121-141.
https://doi.org/10.28974/idojaras.2024.1.7
Savić S, Milanović B, Milošević D, Dunjić J, Pecelj M, Lukić M, Ostojić M, Fekete R. Thermal assessments at local and micro scales during hot summer days: a case study of Belgrade (Serbia). in Időjárá. 2024;128(1):121-141.
doi:10.28974/idojaras.2024.1.7 .
Savić, Stevan, Milanović, Boško, Milošević, Dragan, Dunjić, Jelena, Pecelj, Milica, Lukić, Milica, Ostojić, Miloš, Fekete, Renata, "Thermal assessments at local and micro scales during hot summer days: a case study of Belgrade (Serbia)" in Időjárá, 128, no. 1 (2024):121-141,
https://doi.org/10.28974/idojaras.2024.1.7 . .

Long-Term Assessment of Bioclimatic Conditions at Micro and Local Scales in the Cities of the Western Part of the Balkan Peninsula during the 21st Century

Đurđević, Dejana; Vasić, Milica; Ogrin, Matej; Savić, Stevan; Milošević, Dragan; Dunjić, Jelena; Šećerov, Ivan; Žgela, Matej; Marijana, Boras; Herceg Bulić, Ivana; Pecelj, Milica; Šušnjar, Sanda; Lukić, Milica; Ivanišević, Marko; Trbić, Goran; Ćulafić, Golub; Mitrović, Luka

(Basel : MDPI, 2023)

TY  - JOUR
AU  - Đurđević, Dejana
AU  - Vasić, Milica
AU  - Ogrin, Matej
AU  - Savić, Stevan
AU  - Milošević, Dragan
AU  - Dunjić, Jelena
AU  - Šećerov, Ivan
AU  - Žgela, Matej
AU  - Marijana, Boras
AU  - Herceg Bulić, Ivana
AU  - Pecelj, Milica
AU  - Šušnjar, Sanda
AU  - Lukić, Milica
AU  - Ivanišević, Marko
AU  - Trbić, Goran
AU  - Ćulafić, Golub
AU  - Mitrović, Luka
PY  - 2023
UR  - http://gery.gef.bg.ac.rs/handle/123456789/1517
AB  - Thermal comfort assessments at local or micro-scales within urban areas can provide crucial insights for the urban adaptation strategies pertaining to climate-conscious urban planning and public health. However, the availability of long-term or mid-term daily or hourly meteorological data sets from urban environments remains a significant challenge even in the 21st century. Consequently, this study aimed to assess the thermal conditions in cities across the western part of the Balkan Peninsula, encompassing five countries (Slovenia, Croatia, Serbia, Bosnia and Herzegovina, and Montenegro), by utilizing the Physiological Equivalent Temperature (PET) index. Meteorological data sets, comprising air temperature, relative humidity, wind speed, and cloudiness, were collected from 32 national meteorological stations/measurement locations spanning the period from 2001 to 2020. The PET calculations were conducted based on meteorological data measured three times per day (7 a.m., 2 p.m., and 9 p.m.). Upon conducting a spatial analysis of the meteorological stations, it was observed that most of them (25 stations) were situated within built-up areas or urban suburbs, rendering them highly relevant for local or micro-scale climate and bioclimate assessments. The findings revealed that urban locations exhibited slightly higher PET heat stress levels, particularly during the summer season and at 2 p.m. Moreover, higher average PET values were observed in both urban and non-urban stations situated within a continental climate during warmer periods, such as summer. In contrast, during the colder seasons, namely winter and spring, higher PET values were prevalent in the Mediterranean region. Furthermore, the PET frequency analysis revealed a greater prevalence of extreme and severe heat stress levels in stations within continental climates, particularly those located in urban areas, as compared to stations in Mediterranean climates. In contrast, during the winter and spring seasons, monitoring stations in close proximity to the Adriatic Sea, characterized by a Mediterranean climate, exhibited significantly lower levels of cold stress compared to inland stations. Evidently, in addition to the climatic characteristics and surrounding terrain, the urban morphology significantly impacts the thermal conditions within cities.
PB  - Basel : MDPI
T2  - Sustainability
T1  - Long-Term Assessment of Bioclimatic Conditions at Micro and Local Scales in the Cities of the Western Part of the Balkan Peninsula during the 21st Century
VL  - 15
IS  - 21
SP  - 15286
DO  - 10.3390/su152115286
ER  - 
@article{
author = "Đurđević, Dejana and Vasić, Milica and Ogrin, Matej and Savić, Stevan and Milošević, Dragan and Dunjić, Jelena and Šećerov, Ivan and Žgela, Matej and Marijana, Boras and Herceg Bulić, Ivana and Pecelj, Milica and Šušnjar, Sanda and Lukić, Milica and Ivanišević, Marko and Trbić, Goran and Ćulafić, Golub and Mitrović, Luka",
year = "2023",
abstract = "Thermal comfort assessments at local or micro-scales within urban areas can provide crucial insights for the urban adaptation strategies pertaining to climate-conscious urban planning and public health. However, the availability of long-term or mid-term daily or hourly meteorological data sets from urban environments remains a significant challenge even in the 21st century. Consequently, this study aimed to assess the thermal conditions in cities across the western part of the Balkan Peninsula, encompassing five countries (Slovenia, Croatia, Serbia, Bosnia and Herzegovina, and Montenegro), by utilizing the Physiological Equivalent Temperature (PET) index. Meteorological data sets, comprising air temperature, relative humidity, wind speed, and cloudiness, were collected from 32 national meteorological stations/measurement locations spanning the period from 2001 to 2020. The PET calculations were conducted based on meteorological data measured three times per day (7 a.m., 2 p.m., and 9 p.m.). Upon conducting a spatial analysis of the meteorological stations, it was observed that most of them (25 stations) were situated within built-up areas or urban suburbs, rendering them highly relevant for local or micro-scale climate and bioclimate assessments. The findings revealed that urban locations exhibited slightly higher PET heat stress levels, particularly during the summer season and at 2 p.m. Moreover, higher average PET values were observed in both urban and non-urban stations situated within a continental climate during warmer periods, such as summer. In contrast, during the colder seasons, namely winter and spring, higher PET values were prevalent in the Mediterranean region. Furthermore, the PET frequency analysis revealed a greater prevalence of extreme and severe heat stress levels in stations within continental climates, particularly those located in urban areas, as compared to stations in Mediterranean climates. In contrast, during the winter and spring seasons, monitoring stations in close proximity to the Adriatic Sea, characterized by a Mediterranean climate, exhibited significantly lower levels of cold stress compared to inland stations. Evidently, in addition to the climatic characteristics and surrounding terrain, the urban morphology significantly impacts the thermal conditions within cities.",
publisher = "Basel : MDPI",
journal = "Sustainability",
title = "Long-Term Assessment of Bioclimatic Conditions at Micro and Local Scales in the Cities of the Western Part of the Balkan Peninsula during the 21st Century",
volume = "15",
number = "21",
pages = "15286",
doi = "10.3390/su152115286"
}
Đurđević, D., Vasić, M., Ogrin, M., Savić, S., Milošević, D., Dunjić, J., Šećerov, I., Žgela, M., Marijana, B., Herceg Bulić, I., Pecelj, M., Šušnjar, S., Lukić, M., Ivanišević, M., Trbić, G., Ćulafić, G.,& Mitrović, L.. (2023). Long-Term Assessment of Bioclimatic Conditions at Micro and Local Scales in the Cities of the Western Part of the Balkan Peninsula during the 21st Century. in Sustainability
Basel : MDPI., 15(21), 15286.
https://doi.org/10.3390/su152115286
Đurđević D, Vasić M, Ogrin M, Savić S, Milošević D, Dunjić J, Šećerov I, Žgela M, Marijana B, Herceg Bulić I, Pecelj M, Šušnjar S, Lukić M, Ivanišević M, Trbić G, Ćulafić G, Mitrović L. Long-Term Assessment of Bioclimatic Conditions at Micro and Local Scales in the Cities of the Western Part of the Balkan Peninsula during the 21st Century. in Sustainability. 2023;15(21):15286.
doi:10.3390/su152115286 .
Đurđević, Dejana, Vasić, Milica, Ogrin, Matej, Savić, Stevan, Milošević, Dragan, Dunjić, Jelena, Šećerov, Ivan, Žgela, Matej, Marijana, Boras, Herceg Bulić, Ivana, Pecelj, Milica, Šušnjar, Sanda, Lukić, Milica, Ivanišević, Marko, Trbić, Goran, Ćulafić, Golub, Mitrović, Luka, "Long-Term Assessment of Bioclimatic Conditions at Micro and Local Scales in the Cities of the Western Part of the Balkan Peninsula during the 21st Century" in Sustainability, 15, no. 21 (2023):15286,
https://doi.org/10.3390/su152115286 . .