Grama, Vasile

Link to this page

Authority KeyName Variants
orcid::0000-0003-0600-1138
  • Grama, Vasile (2)
Projects

Author's Bibliography

Evaluation of Rainfall Erosivity in the Western Balkans by Mapping and Clustering ERA5 Reanalysis Data

Micić Ponjiger, Tanja; Lukić, Tin; Wilby, Robert; Marković, Slobodan; Valjarević, Aleksandar; Dragićević, Slavoljub; Gavrilov, Milivoj; Ponjiger, Igor; Durlević, Uroš; Milanović, Miško; Basarin, Biljana; Mlađan, Dragan; Mitrović, Nikola; Grama, Vasile; Morar, Cezar

(Basel : MDPI, 2023)

TY  - JOUR
AU  - Micić Ponjiger, Tanja
AU  - Lukić, Tin
AU  - Wilby, Robert
AU  - Marković, Slobodan
AU  - Valjarević, Aleksandar
AU  - Dragićević, Slavoljub
AU  - Gavrilov, Milivoj
AU  - Ponjiger, Igor
AU  - Durlević, Uroš
AU  - Milanović, Miško
AU  - Basarin, Biljana
AU  - Mlađan, Dragan
AU  - Mitrović, Nikola
AU  - Grama, Vasile
AU  - Morar, Cezar
PY  - 2023
UR  - http://gery.gef.bg.ac.rs/handle/123456789/1315
AB  - The Western Balkans (WB) region is highly prone to water erosion processes, and therefore, the estimation of rainfall erosivity (R-factor) is essential for understanding the complex relationships between hydro-meteorological factors and soil erosion processes. The main objectives of this study are to (1) estimate the spatial-temporal distribution R-factor across the WB region by applying the RUSLE and RUSLE2 methodology with data for the period between 1991 and 2020 and (2) apply cluster analysis to identify places of high erosion risk, and thereby offer a means of targeting suitable mitigation measures. To assess R-factor variability, the ERA5 reanalysis hourly data (0.25° × 0.25° spatial resolution) comprised 390 grid points were used. The calculations were made on a decadal resolution (i.e., for the 1990s, the 2000s, and the 2010s), as well as for the whole study period (1991–2020). In order to reveal spatial patterns of rainfall erosivity, a k-means clustering algorithm was applied. Visualization and mapping were performed in python using the Matplotlib, Seaborn, and Cartopy libraries. Hourly precipitation intensity and monthly precipitation totals exhibited pronounced variability over the study area. High precipitation values were observed in the SW with a >0.3 mm h−1 average, while the least precipitation was seen in the Pannonian Basin and far south (Albanian coast), where the mean intensity was less than an average of 0.1 mm h−1. R-factor variability was very high for both the RUSLE and RUSLE2 methods. The mean R-factor calculated by RUSLE2 was 790 MJ mm ha−1·h−1·yr−1, which is 58% higher than the mean R-factor obtained from RUSLE (330 MJ mm ha−1·h−1·yr−1). The analysis of the R-factor at decadal timescales suggested a rise of 14% in the 2010s. The k-means algorithm for both the RUSLE and RUSLE2 methods implies better spatial distribution in the case of five clusters (K = 5) regarding the R-factor values. The rainfall erosivity maps presented in this research can be seen as useful tools for the assessment of soil erosion intensity and erosion control works, especially for agriculture and land use planning. Since the R-factor is an important part of soil erosion models (RUSLE and RUSLE2), the results of this study can be used as a guide for soil control works, landscape modeling, and suitable mitigation measures on a regional scale.
PB  - Basel : MDPI
T2  - Atmosphere
T1  - Evaluation of Rainfall Erosivity in the Western Balkans by Mapping and Clustering ERA5 Reanalysis Data
VL  - 14
IS  - 1
SP  - 104
DO  - 10.3390/atmos14010104
ER  - 
@article{
author = "Micić Ponjiger, Tanja and Lukić, Tin and Wilby, Robert and Marković, Slobodan and Valjarević, Aleksandar and Dragićević, Slavoljub and Gavrilov, Milivoj and Ponjiger, Igor and Durlević, Uroš and Milanović, Miško and Basarin, Biljana and Mlađan, Dragan and Mitrović, Nikola and Grama, Vasile and Morar, Cezar",
year = "2023",
abstract = "The Western Balkans (WB) region is highly prone to water erosion processes, and therefore, the estimation of rainfall erosivity (R-factor) is essential for understanding the complex relationships between hydro-meteorological factors and soil erosion processes. The main objectives of this study are to (1) estimate the spatial-temporal distribution R-factor across the WB region by applying the RUSLE and RUSLE2 methodology with data for the period between 1991 and 2020 and (2) apply cluster analysis to identify places of high erosion risk, and thereby offer a means of targeting suitable mitigation measures. To assess R-factor variability, the ERA5 reanalysis hourly data (0.25° × 0.25° spatial resolution) comprised 390 grid points were used. The calculations were made on a decadal resolution (i.e., for the 1990s, the 2000s, and the 2010s), as well as for the whole study period (1991–2020). In order to reveal spatial patterns of rainfall erosivity, a k-means clustering algorithm was applied. Visualization and mapping were performed in python using the Matplotlib, Seaborn, and Cartopy libraries. Hourly precipitation intensity and monthly precipitation totals exhibited pronounced variability over the study area. High precipitation values were observed in the SW with a >0.3 mm h−1 average, while the least precipitation was seen in the Pannonian Basin and far south (Albanian coast), where the mean intensity was less than an average of 0.1 mm h−1. R-factor variability was very high for both the RUSLE and RUSLE2 methods. The mean R-factor calculated by RUSLE2 was 790 MJ mm ha−1·h−1·yr−1, which is 58% higher than the mean R-factor obtained from RUSLE (330 MJ mm ha−1·h−1·yr−1). The analysis of the R-factor at decadal timescales suggested a rise of 14% in the 2010s. The k-means algorithm for both the RUSLE and RUSLE2 methods implies better spatial distribution in the case of five clusters (K = 5) regarding the R-factor values. The rainfall erosivity maps presented in this research can be seen as useful tools for the assessment of soil erosion intensity and erosion control works, especially for agriculture and land use planning. Since the R-factor is an important part of soil erosion models (RUSLE and RUSLE2), the results of this study can be used as a guide for soil control works, landscape modeling, and suitable mitigation measures on a regional scale.",
publisher = "Basel : MDPI",
journal = "Atmosphere",
title = "Evaluation of Rainfall Erosivity in the Western Balkans by Mapping and Clustering ERA5 Reanalysis Data",
volume = "14",
number = "1",
pages = "104",
doi = "10.3390/atmos14010104"
}
Micić Ponjiger, T., Lukić, T., Wilby, R., Marković, S., Valjarević, A., Dragićević, S., Gavrilov, M., Ponjiger, I., Durlević, U., Milanović, M., Basarin, B., Mlađan, D., Mitrović, N., Grama, V.,& Morar, C.. (2023). Evaluation of Rainfall Erosivity in the Western Balkans by Mapping and Clustering ERA5 Reanalysis Data. in Atmosphere
Basel : MDPI., 14(1), 104.
https://doi.org/10.3390/atmos14010104
Micić Ponjiger T, Lukić T, Wilby R, Marković S, Valjarević A, Dragićević S, Gavrilov M, Ponjiger I, Durlević U, Milanović M, Basarin B, Mlađan D, Mitrović N, Grama V, Morar C. Evaluation of Rainfall Erosivity in the Western Balkans by Mapping and Clustering ERA5 Reanalysis Data. in Atmosphere. 2023;14(1):104.
doi:10.3390/atmos14010104 .
Micić Ponjiger, Tanja, Lukić, Tin, Wilby, Robert, Marković, Slobodan, Valjarević, Aleksandar, Dragićević, Slavoljub, Gavrilov, Milivoj, Ponjiger, Igor, Durlević, Uroš, Milanović, Miško, Basarin, Biljana, Mlađan, Dragan, Mitrović, Nikola, Grama, Vasile, Morar, Cezar, "Evaluation of Rainfall Erosivity in the Western Balkans by Mapping and Clustering ERA5 Reanalysis Data" in Atmosphere, 14, no. 1 (2023):104,
https://doi.org/10.3390/atmos14010104 . .
1
7

The coastal fog and ecological balance for plants in the Jizan region, Saudi Arabia

Valjarević, Aleksandar; Algarni, Salem; Morar, Cezar; Grama, Vasile; Stupariu, Marius; Tiba, Alexandru; Lukić, Tin

(Elsevier, 2023)

TY  - JOUR
AU  - Valjarević, Aleksandar
AU  - Algarni, Salem
AU  - Morar, Cezar
AU  - Grama, Vasile
AU  - Stupariu, Marius
AU  - Tiba, Alexandru
AU  - Lukić, Tin
PY  - 2023
UR  - http://gery.gef.bg.ac.rs/handle/123456789/1717
AB  - Fog water collection provides a sustainable resource for watering of crops. The Jizan region is one of the smallest states in the Kingdom of Saudi Arabia (KSA) but very rich with unique flora, fauna, landscape diversity, and occurrence of fog. According to satellite data from the period between (1991–2021) the average visibility in this fog belt varied between 5 m and 100 m. Specific relief properties, such as elevation contrast, present rare space for flora preservation and sustainable fog utilization and use in the watering of crops. Some results showed that number of foggy days is not equal and can be divided in three big cycles. It was estimated that 8 × 1013 L, or 80 m3 of fresh water from fog per year, could be used for drinking and partly for farming in Jizan region from settlements Al Araq and Al Gandla, city of Jizan, Al Madaya, Al Mubarakiyah, Muwassam. This amount of water varied through time. The last observational period had large amount of water, 10 × 1013 L or 100 m3. The main methodologies used in this research were advanced GIS (Geographical Information Systems), Remote Sensing (RS), and numerical analysis. Satellite data were downloaded from National Oceanic and Atmospheric Administration (NOAA) and Landsat 8 and 9 satellite missions. This kind of alternative water may produce stability for three main plants in Jizan region, palm, wheat and olive. Typical arid regions in KSA can be transformed by water used from the fog.
PB  - Elsevier
PB  - King Saud University
T2  - Saudi Journal of Biological Sciences
T1  - The coastal fog and ecological balance for plants in the Jizan region, Saudi Arabia
VL  - 30
IS  - 1
SP  - 103494
EP  - 103494
DO  - 10.1016/j.sjbs.2022.103494
ER  - 
@article{
author = "Valjarević, Aleksandar and Algarni, Salem and Morar, Cezar and Grama, Vasile and Stupariu, Marius and Tiba, Alexandru and Lukić, Tin",
year = "2023",
abstract = "Fog water collection provides a sustainable resource for watering of crops. The Jizan region is one of the smallest states in the Kingdom of Saudi Arabia (KSA) but very rich with unique flora, fauna, landscape diversity, and occurrence of fog. According to satellite data from the period between (1991–2021) the average visibility in this fog belt varied between 5 m and 100 m. Specific relief properties, such as elevation contrast, present rare space for flora preservation and sustainable fog utilization and use in the watering of crops. Some results showed that number of foggy days is not equal and can be divided in three big cycles. It was estimated that 8 × 1013 L, or 80 m3 of fresh water from fog per year, could be used for drinking and partly for farming in Jizan region from settlements Al Araq and Al Gandla, city of Jizan, Al Madaya, Al Mubarakiyah, Muwassam. This amount of water varied through time. The last observational period had large amount of water, 10 × 1013 L or 100 m3. The main methodologies used in this research were advanced GIS (Geographical Information Systems), Remote Sensing (RS), and numerical analysis. Satellite data were downloaded from National Oceanic and Atmospheric Administration (NOAA) and Landsat 8 and 9 satellite missions. This kind of alternative water may produce stability for three main plants in Jizan region, palm, wheat and olive. Typical arid regions in KSA can be transformed by water used from the fog.",
publisher = "Elsevier, King Saud University",
journal = "Saudi Journal of Biological Sciences",
title = "The coastal fog and ecological balance for plants in the Jizan region, Saudi Arabia",
volume = "30",
number = "1",
pages = "103494-103494",
doi = "10.1016/j.sjbs.2022.103494"
}
Valjarević, A., Algarni, S., Morar, C., Grama, V., Stupariu, M., Tiba, A.,& Lukić, T.. (2023). The coastal fog and ecological balance for plants in the Jizan region, Saudi Arabia. in Saudi Journal of Biological Sciences
Elsevier., 30(1), 103494-103494.
https://doi.org/10.1016/j.sjbs.2022.103494
Valjarević A, Algarni S, Morar C, Grama V, Stupariu M, Tiba A, Lukić T. The coastal fog and ecological balance for plants in the Jizan region, Saudi Arabia. in Saudi Journal of Biological Sciences. 2023;30(1):103494-103494.
doi:10.1016/j.sjbs.2022.103494 .
Valjarević, Aleksandar, Algarni, Salem, Morar, Cezar, Grama, Vasile, Stupariu, Marius, Tiba, Alexandru, Lukić, Tin, "The coastal fog and ecological balance for plants in the Jizan region, Saudi Arabia" in Saudi Journal of Biological Sciences, 30, no. 1 (2023):103494-103494,
https://doi.org/10.1016/j.sjbs.2022.103494 . .
11